cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005203 Fibonacci numbers (or rabbit sequence) converted to decimal.

Original entry on oeis.org

0, 1, 2, 5, 22, 181, 5814, 1488565, 12194330294, 25573364166211253, 439347050970302571643057846, 15829145720289447797800874537321282579904181, 9797766637414564027586288536574448245991597197836000123235901011048118
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the denominator of the continued fraction [2^F(0), 2^F(1), 2^F(2), 2^F(3), 2^F(4), ..., 2^F(n-1)] for n>0. For the numerator, see A063896. - Chinmay Dandekar and Greg Dresden, Sep 11 2020

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    rewrite_0to1_1to10_n_i_times := proc(n,i) local z,j; z := n; j := i; while(j > 0) do z := rewrite_0to1_1to10(z); j := j - 1; od; RETURN(z); end;
    rewrite_0to1_1to10 := proc(n) option remember; if(n < 2) then RETURN(n + 1); else RETURN(((2^(1+(n mod 2))) * rewrite_0to1_1to10(floor(n/2))) + (n mod 2) + 1); fi; end;
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n-1]*2^Fibonacci[n-1] + a[n-2]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Jul 27 2011 *)
  • Python
    def A005203(n):
        s = '0'
        for i in range(n):
            s = s.replace('0','a').replace('1','10').replace('a','1')
        return int(s,2) # Chai Wah Wu, Apr 24 2025

Formula

a(0) = 0, a(1) = 1, a(n) = a(n-1) * 2^F(n-1) + a(n-2).
a(n) = rewrite_0to1_1to10_n_i_times(0, n) [ Each 0->1, 1->10 in binary expansion ]

Extensions

Comments and more terms from Antti Karttunen, Mar 30 1999

A144287 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) = Fibonacci rabbit sequence number n coded in base k.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 10, 22, 5, 1, 5, 17, 93, 181, 8, 1, 6, 26, 276, 2521, 5814, 13, 1, 7, 37, 655, 17681, 612696, 1488565, 21, 1, 8, 50, 1338, 81901, 18105620, 4019900977, 12194330294, 34, 1, 9, 65, 2457, 289045, 255941280, 1186569930001, 6409020585966267, 25573364166211253, 55
Offset: 1

Views

Author

Alois P. Heinz, Sep 17 2008

Keywords

Examples

			Square array begins:
  1,   1,    1,     1,     1,  ...
  1,   2,    3,     4,     5,  ...
  2,   5,   10,    17,    26,  ...
  3,  22,   93,   276,   655,  ...
  5, 181, 2521, 17681, 81901,  ...
		

Crossrefs

Rows n=1-3 give: A000012, A001477, A002522.
Main diagonal gives A144288.

Programs

  • Maple
    f:= proc(n,b) option remember; `if`(n<2, [n,n], [f(n-1, b)[1]*
           b^f(n-1, b)[2] +f(n-2, b)[1], f(n-1, b)[2] +f(n-2, b)[2]])
        end:
    A:= (n,k)-> f(n,k)[1]:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..11);
  • Mathematica
    f[n_, b_] := f[n, b] = If[n < 2, {n, n}, {f[n-1, b][[1]]*b^f[n-1, b][[2]] + f[n-2, b][[1]], f[n-1, b][[2]] + f[n-2, b][[2]]}]; t[n_, k_] := f[n, k][[1]]; Flatten[ Table[t[n, 1+d-n], {d, 1, 11}, {n, 1, d}]] (* Jean-François Alcover, translated from Maple, Dec 09 2011 *)

Formula

See program.

A144288 Fibonacci rabbit sequence number n coded in base n, also diagonal of A144287.

Original entry on oeis.org

1, 2, 10, 276, 81901, 2247615258, 81658169024988865, 644986443956439734064225751112, 3427833941153173630835645403655873661712817810325122
Offset: 1

Views

Author

Alois P. Heinz, Sep 17 2008

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n, b) option remember; `if`(n<2, [n, n], [f(n-1, b)[1] *b^f(n-1, b)[2] +f(n-2, b)[1], f(n-1, b)[2] +f(n-2, b)[2]]) end: a:= n-> f(n, n)[1]: seq(a(n), n=1..11);
  • Mathematica
    f[n_, b_] := f[n, b] = If[n < 2, {n, n}, {f[n-1, b][[1]]*b^f[n-1, b][[2]] + f[n-2, b][[1]], f[n-1, b][[2]] + f[n-2, b][[2]]}]; a[n_] := f[n, n][[1]]; Table[a[n], {n, 1, 9}] (* Jean-François Alcover, Jan 03 2013, translated from Maple *)

Formula

See program.
Showing 1-3 of 3 results.