cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005207 a(n) = (F(2*n-1) + F(n+1))/2 where F(n) is a Fibonacci number.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 51, 127, 322, 826, 2135, 5545, 14445, 37701, 98514, 257608, 673933, 1763581, 4615823, 12082291, 31628466, 82798926, 216761547, 567474769, 1485645049, 3889431721, 10182603746, 26658304492, 69792188337, 182718064101, 478361686155, 1252366480135
Offset: 0

Views

Author

Keywords

Comments

Number of block fountains with exactly n coins in the base when mirror image fountains are identified. - Michael Woltermann (mwoltermann(AT)washjeff.edu), Oct 06 2010
a(n) = C(F(n+1)+1,2) + C(F(n)+1,2) = pairwise sums of A033192. - Ralf Stephan, Jul 06 2003
Number of (3412,54312)- and (3412,45321)-avoiding involutions in S_{n+1}. - Ralf Stephan, Jul 06 2003
Number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 1, s(n) = 1. - Herbert Kociemba, May 31 2004
The sequence 1,1,2,4,9,... has g.f. 1/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x))))=(1-3*x+x^2+x^2)/(1-4*x+3*x^2+2*x^3-x^4), and general term (A001519(n)+A000045(n+1))/2. It is the binomial transform of A001519 aerated. - Paul Barry, Dec 17 2009
The Kn3 and Kn4 sums, see A180662 for their definitions, of Losanitsch's triangle A034851 lead to this sequence. - Johannes W. Meijer, Jul 14 2011
Convolution of [1,1,1,2,5,...], which is A001519 with another leading 1, and A212804. - R. J. Mathar, Apr 14 2018
a(n) is the number of Motzkin n-paths of height <= 3. - Alois P. Heinz, Nov 24 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A005207:=-(1-2*z-z^2+z^3)/(z^2-3*z+1)/(z^2+z-1); # Simon Plouffe in his 1992 dissertation with offset 0
    a:= n-> (Matrix([[1,1,1,3]]). Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [4,-3,-2,1][i] else 0 fi)^n)[1,2]: seq(a(n), n=0..34); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    LinearRecurrence[{4, -3, -2, 1}, {1, 2, 4, 9}, 30] (* Jean-François Alcover, Jan 31 2016 *)
  • PARI
    a(n)=(fibonacci(2*n-1)+fibonacci(n+1))/2
    
  • PARI
    x='x+O('x^50); Vec(-x*(1-2*x-x^2+x^3)/((x^2+x-1)*(x^2-3*x+1))) \\ G. C. Greubel, Mar 05 2017

Formula

G.f.: 1-x*(1-2*x-x^2+x^3)/((x^2+x-1)*(x^2-3*x+1)).
a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3) + a(n-4).
a(n) = (w^(2*n-1) + w^(1-2*n) + w^(n+1) - (-w)^(-1-n))/(4*w-2) where w = (1+sqrt(5))/2.
a(n) = (2/5)*Sum_{k=1..4} ( sin(Pi*k/5)^2*(1 + 2*cos(Pi*k/5))^n ). - Herbert Kociemba, May 31 2004
a(-1-2*n) = A027994(2*n); a(-2*n)=A059512(2*n+1).
Let M = an infinite tridiagonal matrix with all 1's in the super and main diagonals and [1,1,1,0,0,0,...] in the subdiagonal. Let V = vector [1,0,0,0,...]. The sequence is generated as leftmost column of M*V iterates. - Gary W. Adamson, Jun 07 2011
2*a(n) = A000045(n+1) + A001519(n). - R. J. Mathar, Apr 14 2018
a(n) mod 2 = A131719(n+3). - Alois P. Heinz, Nov 24 2023

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 24 2023