A005214 Triangular numbers together with squares (excluding 0).
1, 3, 4, 6, 9, 10, 15, 16, 21, 25, 28, 36, 45, 49, 55, 64, 66, 78, 81, 91, 100, 105, 120, 121, 136, 144, 153, 169, 171, 190, 196, 210, 225, 231, 253, 256, 276, 289, 300, 324, 325, 351, 361, 378, 400, 406, 435, 441, 465, 484, 496, 528, 529, 561, 576, 595, 625, 630, 666, 676
Offset: 1
References
- Douglas R. Hofstadter, Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought, (together with the Fluid Analogies Research Group), NY: Basic Books, 1995, p. 15.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Douglas R. Hofstadter, Analogies and Sequences: Intertwined Patterns of Integers and Patterns of Thought Processes, DIMACS Conference on Challenges of Identifying Integer Sequences, Rutgers University, October 10 2014; Part 1, Part 2.
- Eric Weisstein's World of Mathematics, Square Triangular Number.
Crossrefs
Programs
-
Haskell
import Data.List.Ordered (union) a005214 n = a005214_list !! (n-1) a005214_list = tail $ union a000290_list a000217_list -- Reinhard Zumkeller, Feb 15 2015, Aug 03 2011
-
Maple
a := proc(n) floor(sqrt(n)): floor(sqrt(n+n)): `if`(n+n = %*% + % or n = %% * %%, n, NULL) end: # Peter Luschny, May 01 2014
-
Mathematica
With[{upto=700},Module[{maxs=Floor[Sqrt[upto]], maxt=Floor[(Sqrt[8upto+1]- 1)/2]},Union[Join[Range[maxs]^2, Table[(n(n+1))/2,{n,maxt}]]]]] (* Harvey P. Dale, Sep 17 2011 *)
-
PARI
upTo(lim)=vecsort(concat(vector(sqrtint(lim\1),n,n^2), vector(floor(sqrt(2+2*lim)-1/2),n,n*(n+1)/2)),,8) \\ Charles R Greathouse IV, Aug 04 2011
-
PARI
isok(m) = ispolygonal(m,3) || ispolygonal(m,4); \\ Michel Marcus, Mar 13 2021
Formula
From Reinhard Zumkeller, Aug 03 2011: (Start)
a(n) ~ c * n^2, where c = 3 - 2*sqrt(2) = A157259 - 4 = 0.171572... . - Amiram Eldar, Apr 04 2025