cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005220 Number of Dyck paths of knight moves.

Original entry on oeis.org

1, 0, 1, 0, 3, 2, 12, 14, 54, 86, 274, 528, 1515, 3266, 8854, 20422, 53786, 129368, 336103, 830148, 2145020, 5390580, 13913325, 35378586, 91415954, 234397542, 606983495, 1566013450, 4065765499, 10540066710, 27437831060, 71404804002
Offset: 0

Views

Author

Keywords

Comments

A Dyck path of knight moves of size n is a path in ZxZ which:
(1) is made only of steps NNE, NEE, SSE and SEE;
(2) starts at (0,0) and ends at (n,0);
(3) never goes strictly below the x-axis. - Gheorghe Coserea, Jan 16 2017

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A285174.

Programs

  • Mathematica
    gf = (1 + 2z + Sqrt[1 - 4z + 4z^2 - 4z^4] - Sqrt[2]*Sqrt[1 - 4z^2 - 2z^4 + (2z + 1)*Sqrt[1 - 4z + 4z^2 - 4z^4]])/(4z^2); CoefficientList[gf + O[z]^32, z] (* Jean-François Alcover, Jul 16 2015 *)
  • Maxima
    a(n):=sum((sum(binomial(j,m-j)*binomial(m+1,j),j,ceiling(m/2),m))*sum((binomial(m+2*k,k)*sum(binomial(k,l)*binomial(k-l,n-m-3*l-k)*(-1)^(n-l-k),l,0,k))/(m+k+1),k,0,n-m),m,0,n); /*  Vladimir Kruchinin, Mar 05 2016 */
    
  • PARI
    x='x; y='y;
    Fxy = x^4*y^4 - x^2*(2*x+1)*y^3 + x*(x^3+2*x+2)*y^2 - (2*x+1)*y + 1;
    seq(N) = {
      my(y0 = 1 + O('x^N), y1=0, dFxy=deriv(Fxy, 'y));
      for (k = 1, N,
        y1 = y0 - subst(Fxy, 'y, y0)/subst(dFxy, 'y, y0);
        if (y1 == y0, break()); y0 = y1);
      Vec(y0);
    };
    seq(32) \\ Gheorghe Coserea, Jan 16 2017

Formula

G.f.: (1+2z+sqrt(1-4z+4z^2-4z^4)-sqrt(2)*sqrt(1-4z^2-2z^4+(2z+1)sqrt(1-4z+4z^2-4z^4)))/[4z^2].
a(n) ~ (2+sqrt(3))*(sqrt(3*(7*sqrt(3)-3)/46)-sqrt((9-5*sqrt(3))/2)) * (1+sqrt(3))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013
a(n) = Sum_{m=0..n}((Sum_{j=ceiling(m/2)..m}(binomial(j,m-j)*binomial(m+1,j)))* Sum_{k=0..n-m}((binomial(m+2*k,k)*Sum_{l=0..k}(binomial(k,l)*binomial(k-l,n-m-3*l-k)*(-1)^(n-l-k)))/(m+k+1))). - Vladimir Kruchinin, Mar 05 2016
0 = x^4*y^4 - x^2*(2*x+1)*y^3 + x*(x^3+2*x+2)*y^2 - (2*x+1)*y + 1, where y is the g.f. - Gheorghe Coserea, Jan 16 2017

Extensions

More terms from Emeric Deutsch, Dec 17 2003