cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A096587 Triangle read by rows: T(n,k)=number of Catalan knight paths in Quadrant I from (0,0) to (n,k), for 0 <= k <= 2*n, n >= 0. A Catalan knight moves (1 right and 2 up) or (1 right and 2 down) or (2 right and 1 up) or (2 right and 1 down).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 2, 2, 0, 0, 1, 3, 3, 1, 2, 3, 3, 0, 0, 1, 2, 4, 9, 8, 3, 3, 4, 4, 0, 0, 1, 12, 12, 10, 11, 18, 15, 6, 4, 5, 5, 0, 0, 1, 14, 22, 42, 39, 27, 22, 30, 24, 10, 5, 6, 6, 0, 0, 1, 54, 61, 64, 72, 98, 87, 56, 38, 45, 35, 15, 6, 7, 7, 0, 0, 1, 86, 128, 213, 217, 181, 167
Offset: 0

Views

Author

Clark Kimberling, Jun 28 2004

Keywords

Examples

			Rows:
  1
  0 0 1
  1 1 0 0 1
  0 1 2 2 0 0 1
  ...
T(3,2) counts these paths: (0,0)-(1,2)-(2,0)-(3,2) and (0,0)-(1,2)-(2,4)-(3,2).
		

Crossrefs

Cf. A005220 (column 0), A005221 (column 1), A096588, A096608.

Programs

  • Mathematica
    A096587list[rowmax_]:=Module[{T},T[0,0]=1;T[n_,k_]:=T[n,k]=If[0<=k<=2n,T[n-1,k-2]+T[n-2,k-1]+T[n-1,k+2]+T[n-2,k+1],0];Table[T[n,k],{n,0,rowmax},{k,0,2n}]];A096587list[10] (* Generates 11 rows *) (* Paolo Xausa, May 22 2023 *)

Formula

T(0, 0) = 1; T(1, 2) = 1; for n >= 2, T(n, 0) = T(n-2, 1)+T(n-1, 2), T(n, 1) = T(n-2, 0)+T(n-2, 2)+T(n-1, 3); for k >= 2, T(n, k) = T(n-2, k-1)+T(n-2, k+1)+T(n-1, k-2)+T(n-1, k+2).

Extensions

Offset changed to 0 by Paolo Xausa, May 22 2023

A005221 Number of Dyck paths of knight moves.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 12, 22, 61, 128, 335, 756, 1936, 4580, 11652, 28402, 72209, 179460, 457274, 1151725, 2945129, 7489680, 19228598, 49256157, 126958030, 327072560, 846173899, 2190012371, 5685200054, 14770728584, 38463268482, 100259225816
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    a = (2*z + Sqrt[-4*z^4 + 4*z^2 - 4*z + 1] - Sqrt[2]*Sqrt[-2*z^4 - 4*z^2 + (2*z + 1)*Sqrt[-4*z^4 + 4*z^2 - 4*z + 1] + 1] + 1)/(4*z^2); gf = z^2*a^2/(1 - z*a); CoefficientList[Series[gf, {z, 0, 31}], z] (* Jean-François Alcover, Dec 21 2012, from g.f. *)
  • Maxima
    a(n):=sum(m*sum((sum(binomial(i+m,j)*binomial(j,i-j),j,0,i+m))*sum((binomial(2*k+i+m-1,k)*sum(binomial(k,l)*binomial(k-l,n-3*l-k-i-m)*(-1)^(n-l-k-m),l,0,k))/(k+i+m),k,0,n-i-m),i,0,n-m),m,2,n); /* Vladimir Kruchinin, Mar 06 2016 */

Formula

G.f.: z^2*A^2/(1-z*A), where A = (1+2*z+sqrt(1-4*z+4*z^2-4*z^4) -sqrt(2)*sqrt(1-4*z^2-2*z^4+(2*z+1)*sqrt(1-4*z+4*z^2-4*z^4)))/(4*z^2).
a(n) ~ c * (1+sqrt(3))^n / n^(3/2), where c = 4/sqrt(Pi*(27 + 17*sqrt(3) - sqrt(2*(730 + 929*sqrt(3))/3))) = 0.5480566813380593118... - Vaclav Kotesovec, Feb 29 2016
a(n) = Sum_{m=2..n} (m*Sum_{i=0..n-m }((Sum_{j=0..i+m }(binomial(i+m,j)*binomial(j,i-j)))*Sum_{k=0..n-i-m }((binomial(2*k+i+m-1,k)*Sum_{l=0..k}(binomial(k,l)*binomial(k-l,n-3*l-k-i-m)*(-1)^(n-l-k-m)))/(k+i+m)))). - Vladimir Kruchinin, Mar 06 2016
A(x) = x^2*A005220(x)^2/(1-x*A005220(x)). - Gheorghe Coserea, Jan 16 2017

Extensions

More terms from Emeric Deutsch, Dec 17 2003

A285174 a(n) is the number of Dyck paths of (2,3)-knight moves of size n.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 7, 0, 7, 4, 38, 0, 52, 44, 192, 34, 445, 328, 1061, 658, 3431, 2266, 7293, 7632, 24322, 17946, 58812, 70006, 171467, 166364, 488958, 581520, 1290879, 1599416, 3972675, 4807640, 10523661, 14798098, 31868794, 41478042, 89608805, 131175180, 259840862, 371465030
Offset: 0

Views

Author

Gheorghe Coserea, Apr 15 2017

Keywords

Comments

A Dyck path of (s,r)-knight moves of size n is a path in ZxZ which:
(1) is made only of steps (s,-r),(s,r),(r,-s),(r,s);
(2) starts at (0,0) and ends at (n,0);
(3) never goes strictly below the x-axis.

Examples

			For n=10 the a(10)=7 solutions are:
3 2 5 4
3 4 5 2
3 5 2 4
3 5 4 2
5 3 2 4
5 3 4 2
5 4 3 2
where the steps are encoded as follows: 2 <-> (2,-3), 3 <-> (2,3), 4 <-> (3,-2), 5 <-> (3,2).
		

Crossrefs

Cf. A005220.

Programs

  • PARI
    x='x; y = 'y;
    Fxy = x^16*y^8 - x^12*(2*x^3+1)*y^7 + x^11*(2*x^3+x+2)*y^6 - x^8*(2*x^5+2*x^3+x^2+1)*y^5 + x^4*(x^8+4*x^6+1)*y^4 - x^4*(2*x^5+2*x^3+x^2+1)*y^3 + x^3*(2*x^3 + x + 2)*y^2 - (2*x^3+1)*y + 1;
    seq(N) = {
      my(y0 = 1 + O('x^N), y1=0, n=1);
      while(n++,
        y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
        if (y1 == y0, break()); y0 = y1); Vec(y0);
    };
    seq(48)

Formula

0 = x^16*y^8 - x^12*(2*x^3+1)*y^7 + x^11*(2*x^3+x+2)*y^6 - x^8*(2*x^5+2*x^3+x^2+1)*y^5 + x^4*(x^8+4*x^6+1)*y^4 - x^4*(2*x^5+2*x^3+x^2+1)*y^3 + x^3*(2*x^3 + x + 2)*y^2 - (2*x^3+1)*y + 1, where y(x) is the g.f. [Labelle and Yeh, 1989, Theorem 3.4]
From Vaclav Kotesovec, Apr 21 2017: (Start)
a(n) ~ sqrt((s*(-3 + (3 + 2*r + 6*r^3)*s - r*(2 + 3*r^2 + 7*r^3 + 9*r^5)*s^2 + 2*(r + 10*r^7 + 3*r^9)*s^3 - r^5*(4 + 5*r^2 + 11*r^3 + 13*r^5)*s^4 + r^8*(11 + 6*r + 14*r^3)*s^5 - 3*r^9*(2 + 5*r^3)*s^6 + 8*r^13*s^7)) / (r*(2 + r^3*(2 - 3*s) - 6*r^4*s - 6*r^6*s + 2*r^7*(12 - 5*s)*s^2 - 10*r^5*s^3 - 20*r^10*s^3 + 30*r^11*s^4 - 42*r^12*s^5 + 28*r^13*s^6 + 10*r^8*s^3*(-2 + 3*s) + r*(1 - 3*s + 6*s^2) + 3*r^9*s^2*(2 + 5*s^2 - 7*s^3)))) / (sqrt(2*Pi) * r^(n - 1/2) * n^(3/2)), where
r = 0.56519771738363939643752801324703081609848397675955382755548381... and
s = 1.35503954183039159917814688295718993182959905413029119006926443... are roots of the system of equations
1 + r^3*(2 + r + 2*r^3)*s^2 + r^4*(1 + 4*r^6 + r^8)*s^4 + r^11*(2 + r + 2*r^3)*s^6 + r^16*s^8 = (1 + 2*r^3)*s*(1 + r^4*s^2 + r^6*s^2 + r^8*s^4 + r^10*s^4 + r^12*s^6) and
2*r^3*s*(2 + r + 2*r^3 + 2*r*(1 + 4*r^6 + r^8)*s^2 + 3*r^8*(2 + r + 2*r^3)*s^4 + 4*r^13*s^6) = (1 + 2*r^3)*(1 + 3*r^4*s^2 + 3*r^6*s^2 + 5*r^8*s^4 + 5*r^10*s^4 + 7*r^12*s^6).
a(n+1)/a(n) tends to 1/r = 1.769292354238631415240409464335033492670553045898857...
(End)

A005222 Number of Dyck paths of knight moves.

Original entry on oeis.org

1, 0, 1, 0, 4, 4, 18, 26, 86, 158, 462, 976, 2665, 6082, 16040, 38338, 99536, 244880, 631923, 1583796, 4081939, 10358670, 26728731, 68425494, 176964795, 455967376, 1182454137, 3061954102, 7962768190, 20702327552, 53983118006, 140817757006
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    A[x_] = (s*(r-1+x-x^3) + x*(1+x)*(3+r*(x-1) + x*(6*x-5)))/(4*x^3) /. s -> Sqrt[2]*Sqrt[1+r-2*x*(2*x+x^3-r)] /. r -> Sqrt[1-4*x*(1-x+x^3)];
    A[x] + O[x]^32 // CoefficientList[#, x]& (* Jean-François Alcover, Mar 26 2017, after Gheorghe Coserea *)

Formula

G.f.: A+z^4A^3/(1-zA)^2, where A=(1+2z+sqrt(1-4z+4z^2-4z^4)-sqrt(2)*sqrt(1-4z^2-2z^4+(2z+1)sqrt(1-4z+4z^2-4z^4)))/[4z^2].
a(n) ~ c * (1+sqrt(3))^n / n^(3/2), where c = sqrt(341*sqrt(3) - 225 + 3*sqrt(46*(197*sqrt(3) - 22))) / (4*sqrt(23*Pi)) = 0.794168381329... - Vaclav Kotesovec, Feb 29 2016
A(x) = x^2*A005220(x)*A005221(x) + x*A005221(x)^2 + A005220(x). - Gheorghe Coserea, Jan 16 2017

Extensions

More terms from Emeric Deutsch, Dec 17 2003

A005223 Number of Dyck paths of knight moves.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 7, 10, 29, 52, 142, 294, 772, 1732, 4451, 10482, 26715, 64908, 165194, 409720, 1044629, 2627712, 6721492, 17079076, 43853111, 112273270, 289390434, 745262022, 1928015211, 4988699442, 12949776427, 33638741110, 87590340673
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    CoefficientList[Series[1-1/(((1+2z+Sqrt[1-4z+4z^2-4z^4])-Sqrt[2] Sqrt[ 1-4z^2-2z^4+(2z+1)Sqrt[1-4z+4z^2-4z^4]])/(4z^2)),{z,0,40}],z] (* Harvey P. Dale, Oct 11 2011 *)

Formula

G.f.=1-1/A, where A=(1+2z+sqrt(1-4z+4z^2-4z^4)-sqrt(2)*sqrt(1-4z^2-2z^4+(2z+1)sqrt(1-4z+4z^2-4z^4)))/[4z^2].
a(n) ~ (23*sqrt(2*(9-5*sqrt(3))) + sqrt(138*(7*sqrt(3)-3))) * (1+sqrt(3))^n / (184*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 10 2014
A(x) = 1 - 1/A005220(x). - Gheorghe Coserea, Jan 16 2017

Extensions

More terms from Emeric Deutsch, Dec 17 2003

A368375 Arises from enumeration of a certain class of partial knight's paths on the square grid.

Original entry on oeis.org

0, 1, 0, 2, 1, 9, 10, 42, 64, 213, 400, 1180, 2510, 6918, 15842, 42134, 100966, 263894, 650688, 1687746, 4238855, 10968196, 27888906, 72187356, 185141385, 480025465, 1238940890, 3219591600, 8350054339, 21752631006, 56634075418, 147899071110, 386293111740
Offset: 0

Views

Author

N. J. A. Sloane, Feb 17 2024

Keywords

Comments

It would be nice to have a more precise definition.

Crossrefs

Programs

  • Mathematica
    aa = (1 + 2z + Sqrt[1 - 4z + 4z^2 - 4z^4] - Sqrt[2]*Sqrt[1 - 4z^2 - 2z^4 + (2z + 1)*Sqrt[1 - 4z + 4z^2 - 4z^4]])/(4z^2);
    a1 = z^2 aa^2 / (1 - z aa);
    gf = (z (u z + 1) aa + u z a1 - u^2) / (u^4 z + u^3 z^2 + u z^2 - u^2 + z);
    Table[SeriesCoefficient[gf,{u,0,2},{z,0,n}], {n,0,30}] (* Andrei Zabolotskii, Jul 25 2025 *)

Formula

G.f.: (1 - (1+x) * A(x) + (x+x^4) * A(x)^2) / (x * (x * A(x) - 1)), where A(x) is the g.f. of A005220. - Andrei Zabolotskii, Jul 25 2025

Extensions

Terms a(10) and beyond from Andrei Zabolotskii, Jul 25 2025
Showing 1-6 of 6 results.