cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005230 Stern's sequence: a(1) = 1, a(n+1) is the sum of the m preceding terms, where m*(m-1)/2 < n <= m*(m+1)/2 or equivalently m = ceiling((sqrt(8*n+1)-1)/2) = A002024(n).

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 20, 40, 77, 148, 285, 570, 1120, 2200, 4323, 8498, 16996, 33707, 66844, 132568, 262936, 521549, 1043098, 2077698, 4138400, 8243093, 16419342, 32706116, 65149296, 130298592, 260075635, 519108172, 1036138646, 2068138892, 4128034691
Offset: 1

Views

Author

Keywords

Comments

A002487 is THE Stern's sequence!
Limit_{n->oo} a(n)/2^n = 0.11756264240558743281779408719593950494049225979176... - Jon E. Schoenfield, Dec 17 2016

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002487.

Programs

  • Maple
    A005230[1] := 1: n := 50: for k from 1 to n-1 do: A005230[k+1] := sum('A005230[j]','j'=k+1-(ceil((sqrt(8*k+1)-1)/2))..k): od: [seq(A005230[k],k=1..n)]; # UlrSchimke(AT)aol.com, Mar 16 2002
  • Mathematica
    Module[{lst={1,1},n=2},While[n<40,AppendTo[lst,Total[ Take[lst, -Ceiling[ (Sqrt[8n+1]-1)/2]]]];n++];lst] (* Harvey P. Dale, Apr 02 2012 *)
  • PARI
    a(n)=if(n==1,1,sum(k=1,ceil((sqrt(8*n-7)-1)/2),a(n-k))) \\ Paul D. Hanna, Aug 28 2006
    
  • PARI
    v=vector(10^3);v[1]=v[2]=1;v[3]=2;v[4]=3;u=vector(#v,i,if(i>4,0,sum(j=1,i,v[j])));for(i=5,#v,m=ceil((sqrt(8*i-7)-1)/2);v[i]=u[i-1]-u[i-m-1];u[i]=u[i-1]+v[i]);u=0;v \\ Charles R Greathouse IV, Sep 19 2011
    
  • Python
    from itertools import count, islice
    from math import isqrt
    def A005230_gen(): # generator of terms
        blist = [1]
        for n in count(1):
            yield blist[-1]
            blist.append(sum(blist[-i] for i in range(1,(isqrt(8*n)+3)//2)))
    A005230_list = list(islice(A005230_gen(),30)) # Chai Wah Wu, Feb 02 2022

Formula

Partial sums give Conway-Guy sequence A005318. Cf. A066777.
2*a(n*(n+1)/2 + 1) = a(n*(n+1)/2 + 2) for n>=1; lim_{n->oo} a(n+1)/a(n) = 2. - Paul D. Hanna, Aug 28 2006

Extensions

Name corrected by Mario Szegedy, Sep 15 1996
Name revised by Ulrich Schimke (ulrschimke(AT)aol.com), Mar 16 2002