A005231 Odd abundant numbers (odd numbers m whose sum of divisors exceeds 2m).
945, 1575, 2205, 2835, 3465, 4095, 4725, 5355, 5775, 5985, 6435, 6615, 6825, 7245, 7425, 7875, 8085, 8415, 8505, 8925, 9135, 9555, 9765, 10395, 11025, 11655, 12285, 12705, 12915, 13545, 14175, 14805, 15015, 15435, 16065, 16695, 17325, 17955
Offset: 1
Keywords
References
- W. Dunham, Euler: The Master of Us All, The Mathematical Association of America Inc., Washington, D.C., 1999, p. 13.
- R. K. Guy, Unsolved Problems in Number Theory, B2.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 128.
Links
- Metin Sariyar, Table of n, a(n) for n = 1..32000 (terms 1..1000 from T. D. Noe)
- Jill Britton, Perfect Number Analyzer.
- L. E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors, American Journal of Mathematics 35 (1913), pp. 413-422.
- Mitsuo Kobayashi, Paul Pollack and Carl Pomerance, On the distribution of sociable numbers, Journal of Number Theory, Vol. 129, No. 8 (2009), pp. 1990-2009. See Theorem 10 on p. 2007.
- Victor Meally, Letter to N. J. A. Sloane, no date.
- Walter Nissen, Abundancy : Some Resources.
- Tyler Ross, A Perfect Number Generalization and Some Euclid-Euler Type Results, Journal of Integer Sequences, Vol. 27 (2024), Article 24.7.5. See p. 10.
- Jay L. Schiffman, Odd Abundant Numbers, Mathematical Spectrum, Volume 37, Number 2 (January 2005), pp 73-75.
- Jay L. Schiffman and Christopher S. Simons, More Odd Abundant Sequences, Volume 38, Number 1 (September 2005), pp. 7-8.
Crossrefs
Programs
-
Maple
A005231 := proc(n) option remember ; local a ; if n = 1 then 945 ; else for a from procname(n-1)+2 by 2 do if numtheory[sigma](a) > 2*a then return a; end if; end do: end if; end proc: # R. J. Mathar, Mar 20 2011
-
Mathematica
fQ[n_] := DivisorSigma[1, n] > 2n; Select[1 + 2Range@ 9000, fQ] (* Robert G. Wilson v, Mar 20 2011 *)
-
PARI
je=[]; forstep(n=1,15000,2, if(sigma(n)>2*n, je=concat(je,n))); je
-
PARI
is_A005231(n)={bittest(n,0)&&sigma(n)>2*n} \\ M. F. Hasler, Jul 28 2016
-
PARI
list(lim)=my(v=List()); forfactored(n=945,lim\1, if(n[2][1,1]>2 && sigma(n,-1)>2, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Apr 21 2022
Formula
a(n) ~ k*n for some constant k (perhaps around 500). - Charles R Greathouse IV, Apr 21 2022
482.8 < k < 489.8 (based on density bounds by Kobayashi et al., 2009). - Amiram Eldar, Jul 17 2022
Extensions
More terms from James Sellers
Comments