A005255 Atkinson-Negro-Santoro sequence: a(n+1) = 2*a(n) - a(n-floor(n/2+1)).
0, 1, 2, 4, 7, 13, 24, 46, 88, 172, 337, 667, 1321, 2629, 5234, 10444, 20842, 41638, 83188, 166288, 332404, 664636, 1328935, 2657533, 5314399, 10628131, 21254941, 42508561, 85014493, 170026357, 340047480, 680089726, 1360169008, 2720327572
Offset: 0
Examples
For n = 4, the sequence b is 7-4,7-2,7-1,7-0 = 3,5,6,7, which has subset sums (grouped by number of terms) 0, 3,5,6,7, 8,9,10,11,12,13, 14,15,16,18, 21.
References
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.28.
- T. V. Narayana, Recent progress and unsolved problems in dominance theory, pp. 68-78 of Combinatorial mathematics (Canberra 1977), Lect. Notes Math. Vol. 686, 1978.
- T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, pp. 100-101.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=0..300
- M. D. Atkinson et al., Sums of lexicographically ordered sets, Discrete Math., 80 (1990), 115-122.
- W. F. Lunnon, Integer sets with distinct subset-sums, Math. Comp. 50 (1988), 297-320.
- B. E. Wynne & N. J. A. Sloane, Correspondence, 1976-84
- B. E. Wynne & T. V. Narayana, Tournament configuration, weighted voting, and partitioned catalans, Preprint.
- Bayard Edmund Wynne, and T. V. Narayana, Tournament configuration and weighted voting, Cahiers du bureau universitaire de recherche opérationnelle, 36 (1981): 75-78.
Programs
-
Haskell
a005255 n = a005255_list !! (n-1) a005255_list = scanl (+) 0 $ tail a002083_list -- Reinhard Zumkeller, Nov 18 2012
-
Mathematica
a[ 0 ] := 0; a[ 1 ] := 1; a[ n_ ] := 2*a[ n - 1 ] - a[(n - 1) - Floor[ (n - 1)/2 + 1 ] ]; For[ n = 1, n <= 100, n++, Print[ a[ n ] ] ];
Extensions
More terms from Winston C. Yang (winston(AT)cs.wisc.edu), Aug 26 2000
Edited by Franklin T. Adams-Watters, Apr 11 2009
Comments