A005278 Noncototients: numbers k such that x - phi(x) = k has no solution.
10, 26, 34, 50, 52, 58, 86, 100, 116, 122, 130, 134, 146, 154, 170, 172, 186, 202, 206, 218, 222, 232, 244, 260, 266, 268, 274, 290, 292, 298, 310, 326, 340, 344, 346, 362, 366, 372, 386, 394, 404, 412, 436, 466, 470, 474, 482, 490, 518, 520
Offset: 1
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004, section B36, pp. 138-142.
- Wacław Sierpiński, Number Theory, Part II, PWN Warszawa, 1959 (in Polish).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000 (first 963 terms from T. D. Noe)
- William D. Banks and Florian Luca, Noncototients and Nonaliquots, arXiv:math/0409231 [math.NT], 2004.
- J. Browkin and A. Schinzel, On integers not of the form n-phi(n), Colloq. Math., Vol. 68 (1995), pp. 55-58.
- Paul Erdős, Über die Zahlen der form sigma(n)-n und n-phi(n), (in German), Elem. Math., Vol. 28 (1973), pp. 83-86; alternative link.
- Achim Flammenkamp and Florian Luca, Infinite families of noncototients, Colloq. Math., Vol. 86 (2000), pp. 37-41.
- Aleksander Grytczuk and Barbara Medryk, On a result of Flammenkamp-Luca concerning noncototient sequence, Tsukuba Journal of Mathematics, Vol. 29, No. 2 (2005), pp. 533-538.
- Gerry Myerson, Western Number Theory Problems, Dec 17 & 19 2012.
- David Ng, Introduction to Noncototients, 2017.
- Carl Pomerance and Hee-Sung Yang, On untouchable numbers and related problems, 2012.
- Carl Pomerance and Hee-Sung Yang, Variant of a theorem of Erdős on the sum-of-proper-divisors function, Math. Comp., Vol. 83, No. 288 (2014), pp. 1903-1913; alternative link.
- Eric Weisstein's World of Mathematics, Noncototient.
Crossrefs
Programs
-
Mathematica
nmax = 520; cototientQ[n_?EvenQ] := (x = n; While[test = x - EulerPhi[x] == n ; Not[test || x > 2*nmax], x++]; test); cototientQ[n_?OddQ] = True; Select[Range[nmax], !cototientQ[#]&] (* Jean-François Alcover, Jul 20 2011 *)
-
PARI
lista(nn)=v = vecsort(vector(nn^2, n, n - eulerphi(n)), ,8); for (n=1, nn, if (! vecsearch(v, n), print1(n, ", "))); \\ Michel Marcus, Oct 03 2016
Formula
{ k | A063740(k) = 0 }. - M. F. Hasler, Jan 11 2018
Extensions
More terms from Jud McCranie, Jan 01 1997
Comments