A005279 Numbers having divisors d, e with d < e < 2*d.
6, 12, 15, 18, 20, 24, 28, 30, 35, 36, 40, 42, 45, 48, 54, 56, 60, 63, 66, 70, 72, 75, 77, 78, 80, 84, 88, 90, 91, 96, 99, 100, 102, 104, 105, 108, 110, 112, 114, 117, 120, 126, 130, 132, 135, 138, 140, 143, 144, 150, 153, 154, 156, 160, 162, 165, 168, 170, 174, 175, 176
Offset: 1
Keywords
References
- R. K. Guy, Unsolved Problems in Number Theory, E3.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Paul Erdős, On the density of some sequences of numbers, Bull. Amer. Math. Soc. 54 (1948), 685--692 MR10,105b; Zbl 32,13 (see Theorem 3).
- Paul Erdős, Some unconventional problems in number theory, Journées Arithmétiques de Luminy, Astérisque 61 (1979), p. 73-82.
- Paul Erdős, Some unconventional problems in number theory, Mathematics Magazine, Vol. 52, No. 2 (1979), pp. 67-70.
- Paul Erdős, On some applications of probability to analysis and number theory, J. London Math. Soc., Vol. 39, No. 1 (1964), pp. 692-696, alternative link.
- Planet Math, Integer Contraharmonic Means, Proposition 4.
- Planet Math, Contraharmonic proportion
- Robert G. Wilson v, Letter, N.D.
Crossrefs
Programs
-
Haskell
a005279 n = a005279_list !! (n-1) a005279_list = filter ((> 0) . a174903) [1..] -- Reinhard Zumkeller, Sep 29 2014
-
Maple
isA005279 := proc(n) local divs,d,e ; divs := numtheory[divisors](n) ; for d from 1 to nops(divs)-1 do for e from d+1 to nops(divs) do if divs[e] < 2*divs[d] then RETURN(true) ; fi ; od: od: RETURN(false) : end; for n from 3 to 300 do if isA005279(n) then printf("%d,",n) ; fi ; od : # R. J. Mathar, Jun 08 2006
-
Mathematica
aQ[n_] := Select[Partition[Divisors[n], 2, 1], #[[2]] < 2 #[[1]] &] != {}; Select[Range[178], aQ] (* Jayanta Basu, Jun 28 2013 *)
-
PARI
is(n)=my(d=divisors(n));for(i=3,#d,if(d[i]<2*d[i-1],return(1)));0 \\ Charles R Greathouse IV, Apr 22 2015
-
Python
from sympy import divisors def is_A005279(n): D=divisors(n)[1:]; return any(e<2*d for d,e in zip(D, D[1:])) # M. F. Hasler, Mar 20 2025
Formula
a(n) = A010814(n)/2. - Omar E. Pol, Dec 04 2016
Comments