cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005279 Numbers having divisors d, e with d < e < 2*d.

Original entry on oeis.org

6, 12, 15, 18, 20, 24, 28, 30, 35, 36, 40, 42, 45, 48, 54, 56, 60, 63, 66, 70, 72, 75, 77, 78, 80, 84, 88, 90, 91, 96, 99, 100, 102, 104, 105, 108, 110, 112, 114, 117, 120, 126, 130, 132, 135, 138, 140, 143, 144, 150, 153, 154, 156, 160, 162, 165, 168, 170, 174, 175, 176
Offset: 1

Views

Author

Keywords

Comments

The arithmetic and harmonic means of A046793(n) and a(n) are both integers.
n is in this sequence iff n is a multiple of some term in A020886.
a(n) is also a positive integer v for which there exists a smaller positive integer u such that the contraharmonic mean (uu+vv)/(u+v) is an integer c (in fact, there are two distinct values u giving with v the same c). - Pahikkala Jussi, Dec 14 2008
A174903(a(n)) > 0; complement of A174905. - Reinhard Zumkeller, Apr 01 2010
Also numbers n such that A239657(n) > 0. - Omar E. Pol, Mar 23 2014
Erdős (1948) shows that this sequence has a natural density, so a(n) ~ k*n for some constant k. It can be shown that k < 3.03, and by numerical experiments it seems that k is around 1.8. - Charles R Greathouse IV, Apr 22 2015
Numbers k such that at least one of the parts in the symmetric representation of sigma(k) has width > 1. - Omar E. Pol, Dec 08 2016
Erdős conjectured that the asymptotic density of this sequence is 1. The numbers of terms not exceeding 10^k for k = 1, 2, ... are 1, 32, 392, 4312, 45738, 476153, 4911730, 50359766, 513682915, 5224035310, ... - Amiram Eldar, Jul 21 2020
Numbers with at least one partition into two distinct parts (s,t), sWesley Ivan Hurt, Jan 16 2022
Appears to be the set of numbers x such that there exist numbers y and z satisfying the condition (x^2+y^2)/(x^2+z^2) = (x+y)/(x+z). For example, (15^2+10^2)/(15^2+3^2) = (15+10)/(15+3), so 15 is in the sequence. - Gary Detlefs, Apr 01 2023
From Bob Andriesse, Nov 26 2023: (Start)
Rewriting (x^2+y^2) / (x^2+z^2) = (x+y) / (x+z) as (x^2+y^2) / (x+y) = (x^2+z^2) / (x+z) has the advantage that the values on both sides of the = sign in the given example become integers. A possible sequence with the name: "k's for which r = (k^2+m^2) / (k+m) can be an integer while mA053629(n) and the r's being A009003(n). If (k^2+m^2) / (k+m) = r and m satisfies the divisibility condition, then r-m also does, because (k^2 + (r-m)^2) / (k + (r-m)) = r as well, confirming Pahikkala Jussi's comment about the existence of two distinct values for his u.
The fact that 15 is in the sequence is not so much because (15^2 + 10^2) / (15^2 + 3^2) = 1.3888... = (15+10) / (15+3), as indicated by Gary Detlefs, but rather because (15+10) | (15^2 + 10^2). And since r = (15^2 + 10^2) / (15+10) = 13, the second value that satisfies the divisibility condition is 13-10 = 3, so (15^2 + 3^2) / (15+3) = 13 as well.
Since (k+m)| (k^2 + m^2) is equivalent to (k+m) | 2*k^2 as well as to (k+m) | 2*m^2, both of these alternative divisibility conditions can be used to generate the same sequence too. (End)

References

  • R. K. Guy, Unsolved Problems in Number Theory, E3.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A024619 and hence of A002808.

Programs

  • Haskell
    a005279 n = a005279_list !! (n-1)
    a005279_list = filter ((> 0) . a174903) [1..]
    -- Reinhard Zumkeller, Sep 29 2014
    
  • Maple
    isA005279 := proc(n) local divs,d,e ; divs := numtheory[divisors](n) ; for d from 1 to nops(divs)-1 do for e from d+1 to nops(divs) do if divs[e] < 2*divs[d] then RETURN(true) ; fi ; od: od: RETURN(false) : end; for n from 3 to 300 do if isA005279(n) then printf("%d,",n) ; fi ; od : # R. J. Mathar, Jun 08 2006
  • Mathematica
    aQ[n_] := Select[Partition[Divisors[n], 2, 1], #[[2]] < 2 #[[1]] &] != {}; Select[Range[178], aQ] (* Jayanta Basu, Jun 28 2013 *)
  • PARI
    is(n)=my(d=divisors(n));for(i=3,#d,if(d[i]<2*d[i-1],return(1)));0 \\ Charles R Greathouse IV, Apr 22 2015
    
  • Python
    from sympy import divisors
    def is_A005279(n): D=divisors(n)[1:]; return any(e<2*d  for d,e in zip(D, D[1:]))
    # M. F. Hasler, Mar 20 2025

Formula

a(n) = A010814(n)/2. - Omar E. Pol, Dec 04 2016