cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005325 Column of Motzkin triangle.

Original entry on oeis.org

1, 6, 27, 104, 369, 1242, 4037, 12804, 39897, 122694, 373581, 1128816, 3390582, 10136556, 30192102, 89662216, 265640691, 785509362, 2319218869, 6839057544, 20147488020, 59306494520, 174466248840, 512987904000, 1507780192035, 4430417492826, 13015498076181
Offset: 5

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of triangle A020474.

Programs

  • Mathematica
    RecurrenceTable[{3(-1+n)*n*a[-2+n]+n*(1+2n)*a[-1+n]-(-5+n)*(7+n)*a[n]==0, a[5]==1,a[6]==6}, a,{n,5,20}] (* Vaclav Kotesovec, Oct 05 2012 *)
    a = DifferenceRoot[Function[{b, n}, {(-2n^2 - 25n - 78)b[n+1] - 3(n+5)(n+6) b[n] + (n+1)(n+13)b[n+2] == 0, b[1] == 1, b[2] == 6}]][# - 4]&;
    Table[a[n], {n, 5, 31}] (* Jean-François Alcover, Jan 24 2019 *)
  • Maxima
    a(n) := 6*sum(binomial(j,2*j-n+5)*binomial(n+1,j),j,ceiling((n-5)/2),(n+1))/(n+1);
    /* Vladimir Kruchinin, Mar 18 2014 */

Formula

G.f.: z^5*M^6, where M=1+z*M+z^2*M^2 is the g.f. for the Motzkin numbers (A001006). - Emeric Deutsch, Aug 13 2004
a(n) = (sqrt(-3)/81)*((-1)^n*n*(4*n^3-15*n^2-55*n+102)/(n+7)/(n+3)/(n+2)*hypergeom([1/2, n+7],[3],4/3)-(-1)^n*(4*n^4-17*n^3+23*n^2+ 242*n-288)/(n+7)/(n+3)/(n+2)*hypergeom([1/2, n+6],[3],4/3)). - Mark van Hoeij, Oct 29 2011.
a(n) (n + 11) (n - 1) = (n + 4) (3 n + 9) a(n - 2) + (n + 4) (2 n + 9) a(n - 1). - Simon Plouffe, Feb 09 2012
a(n) ~ 3^(n+5/2)/(n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Oct 05 2012
a(n) = 6*sum(j=ceiling((n-5)/2)..(n+1), C(j,2*j-n+5)*C(n+1,j))/(n+1). - Vladimir Kruchinin, Mar 17 2014

Extensions

More terms from Vincenzo Librandi, May 03 2013