cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259971 Triangle read by rows: coefficients xi(n,k) arising from the study of completely transitive graphs on n nodes.

Original entry on oeis.org

1, 1, 1, 2, 5, 3, 10, 40, 51, 21, 122, 644, 1236, 1029, 315, 3346, 21496, 54060, 66780, 40635, 9765, 196082, 1471460, 4527228, 7328580, 6596100, 3134565, 615195
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2015

Keywords

Examples

			Triangle begins:
1,
1,1,
2,5,3,
10,40,51,21,
122,644,1236,1029,315,
3346,21496,54060,66780,40635,9765,
196082,1471460,4527228,7328580,6596100,3134565,615195,
...
		

Crossrefs

Diagonals include A005321, A005330
Row sums are also A005321.

A005332 Certain subgraphs of a directed graph.

Original entry on oeis.org

1, 7, 58, 838, 25171, 1610977, 214838128, 58540023808, 32208188445841, 35543124039418147, 78391002506394742198, 344921660620756227029578, 3025372940760065880037836511, 52886001393832278158415800800117, 1842588406743140390123203185385824268, 127974225758895121562137768141145597226148
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005330.

Programs

  • Mathematica
    p[n_]:=Product[2^k-1, {k,n}]; a[n_]:=Sum[(Binomial[n-1, i] * p[n-1-i] * 2^i*Sum [(-1)^j*(n-1-i-j)/p[j], {j,0,n-2-i}] ), {i,0,n-2}]; Table[a[n], {n,2,17}] (* Stefano Spezia, Sep 07 2022 *)
  • PARI
    p(n) = prod(k=1, n, 2^k-1);
    a(n) = sum(i=0, n-2, binomial(n-1, i) * p(n-1-i) * 2^i * sum(j=0, n-2-i, (-1)^j * (n-1-i-j) / p(j))); \\ Michel Marcus, May 10 2016

Formula

a(n) = Sum_{i=0..n-2} (C(n-1, i) * p(n-1-i) * 2^i * Sum_{j=0..n-2-i} (-1)^j * (n-1-i-j) / p(j)) where p(n) = Product_{k=1..n} (2^k-1). - Sean A. Irvine, May 10 2016

Extensions

More terms from Sean A. Irvine, May 10 2016
Showing 1-2 of 2 results.