cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005360 Flimsy numbers.

Original entry on oeis.org

11, 13, 19, 22, 23, 25, 26, 27, 29, 37, 38, 39, 41, 43, 44, 46, 47, 50, 52, 53, 54, 55, 57, 58, 59, 61, 67, 71, 74, 76, 77, 78, 79, 81, 82, 83, 86, 87, 88, 91, 92, 94, 95, 97, 99, 100, 101, 103, 104, 106, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 121
Offset: 1

Views

Author

Keywords

Comments

Definition: n is flimsy if and only if there exists a k such that A000120(k*n) < A000120(n). That is, some multiple of n has fewer ones in its binary expansion than does n. What are the associated k for each n? What is the smallest n for each k? Stolarsky says "at least half the primes are flimsy." - Jonathan Vos Post, Jul 07 2008
A143073(n) gives the least k for each n in this sequence. - T. D. Noe, Jul 22 2008
If k is in this sequence then so is 2*k. - David A. Corneth, Oct 01 2016

Examples

			11 is flimsy because A000120(3*11) = 2 < A000120(11) = 3.
107 is flimsy because A000120(3*107) = 3 < A000120(107) = 5.
The numbers 37*2^j are flimsy with k=7085. The numbers 67*2^j are flimsy with k = 128207979, 81*2^j are flimsy with k = 1657009, 83*2^j are flimsy with k = 395, 97*2^j with k = 172961, 101*2^j with k = 365, 113*2^j with k = 145, 137*2^j with k = 125400505, any j >= 0. - _R. J. Mathar_, Jul 14 2008
		

References

  • Bojan Basic, The existence of n-flimsy numbers in a given base, The Ramanujan Journal, March 7, 2016, pages 1-11. DOI 10.1007/s11139-015-9768-7.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000120, A125121 (complement).

Programs

  • Mathematica
    nmax = 121; kmax = 200; nn = {37, 67, 81, 83, 97, 101, 113}; flimsyQ[n_ /; MemberQ[nn, n] || MatchQ[FactorInteger[n], {{2, } , {Alternatives @@ nn, 1}}]] = True; flimsyQ[n] := For[k = 2, True, k++, Which[DigitCount[k * n, 2, 1] < DigitCount[n, 2, 1], Return[True], k > kmax, Return[False]]]; Reap[Do[If[flimsyQ[n], Sow[n]], {n, 2, nmax}]][[2, 1]] (* Jean-François Alcover, May 23 2012, after R. J. Mathar *)
    nmax = 200; Bits[n_Integer] := Count[IntegerDigits[n, 2], 1]; FlimsyQ[n_Integer] := FlimsyQ[n] = Module[{res, b = Bits[n], k}, If[b <= 2, False, If[EvenQ[n], FlimsyQ[n/2], res = Union[Mod[2^Range[n], n]]; If[Length[res] == n - 1, True, k = 2; While[k < b && ! MemberQ[Union[Mod[Plus @@@ Subsets[res, {k}], n]], 0], k++]; k < b]]]]; Select[Range[nmax], FlimsyQ] (* Jean-François Alcover, Feb 11 2016, this code is due to T. D. Noe *)

Extensions

More terms from R. J. Mathar, Jul 14 2008