cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005380 Expansion of 1 / Product_{k>=1} (1-x^k)^(k+1).

Original entry on oeis.org

1, 2, 6, 14, 33, 70, 149, 298, 591, 1132, 2139, 3948, 7199, 12894, 22836, 39894, 68982, 117948, 199852, 335426, 558429, 922112, 1511610, 2460208, 3977963, 6390942, 10206862, 16207444, 25596941, 40214896, 62868772, 97814358
Offset: 0

Views

Author

Keywords

Comments

Also, a(n) = number of partitions of the integer n where there are k+1 different kinds of part k for k = 1, 2, 3, ....
Also, a(n) = number of partitions of n objects of 2 colors. These are set partitions, the n objects are not labeled but colored, using two colors. For each subset of size k there are k+1 different possibilities, i=0..k white and k-i black objects.
Also, a(n) = number of simple unlabeled graphs with n nodes of 2 colors whose components are complete graphs. - Geoffrey Critzer, Sep 27 2012

Examples

			We represent each summand, k, in a partition of n as k identical objects. Then we color each object. We have no regard for the order of the colored objects.
a(3) = 14 because we have:  www; wwb; wbb; bbb; ww + w; ww + b;  wb + w; wb + b; bb + w; bb + b; w + w + w; w + w + b; w + b + b; b + b + b, where the 2 colors are black b and white w. - _Geoffrey Critzer_, Sep 27 2012
a(3) = 14 because we have:  3; 3'; 3''; 3'''; 2 + 1; 2 + 1';  2' + 1; 2' + 1'; 2'' + 1; 2'' + 1'; 1 + 1 + 1; 1 + 1 + 1'; 1 + 1' + 1'; 1' + 1' + 1', where a part k of different sorts is given as k, k', k'', etc. - _Joerg Arndt_, Mar 09 2015
From _Alois P. Heinz_, Mar 09 2015: (Start)
The a(4) = 33 = 5 + 9 + 6 + 8 + 5 partitions of 4 objects of 2 colors are:
5 partitions for the integer partition of 4 = 1 + 1 + 1 + 1:
  01: {{b}, {b}, {b}, {b}}
  02: {{b}, {b}, {b}, {w}}
  03: {{b}, {b}, {w}, {w}}
  04: {{b}, {w}, {w}, {w}}
  05: {{w}, {w}, {w}, {w}}
9 partitions for the integer partition of 4 = 1 + 1 + 2:
  06: {{b}, {b}, {b,b}}
  07: {{b}, {w}, {b,b}}
  08: {{w}, {w}, {b,b}}
  09: {{b}, {b}, {w,b}}
  10: {{b}, {w}, {w,b}}
  11: {{w}, {w}, {w,b}}
  12: {{b}, {b}, {w,w}}
  13: {{b}, {w}, {w,w}}
  14: {{w}, {w}, {w,w}}
6 partitions for the integer partition of 4 = 2 + 2:
  15: {{b,b}, {b,b}}
  16: {{b,b}, {w,b}}
  17: {{b,b}, {w,w}}
  18: {{w,b}, {w,b}}
  19: {{w,b}, {w,w}}
  20: {{w,w}, {w,w}}
8 partitions for the integer partition of 4 = 1 + 3:
  21: {{b}, {b,b,b}}
  22: {{w}, {b,b,b}}
  23: {{b}, {w,b,b}}
  24: {{w}, {w,b,b}}
  25: {{b}, {w,w,b}}
  26: {{w}, {w,w,b}}
  27: {{b}, {w,w,w}}
  28: {{w}, {w,w,w}}
5 partitions for the integer partition of 4 = 4:
  29: {{b,b,b,b}}
  30: {{w,b,b,b}}
  31: {{w,w,b,b}}
  32: {{w,w,w,b}}
  33: {{w,w,w,w}}
Some see number partitions, others see set partitions, ...
(End)
It is obvious from the example of _Alois P. Heinz_ that a(n) enumerates multi-set partitions of a multi-set of n elements of two kinds. In the case that there is only one kind, this reduces to the usual case of numerical partitions. In the case that all the n elements are distinct, then this reduces to the case of set partitions. - _Michael Somos_, Mar 09 2015
There are a(3) = 14 plane partitions of 6 with trace 3; of 7 with trace 4; of 8 with trace 5; etc. See a formula above with the Stanley Exercise 7.99. - _Wolfdieter Lang_, Mar 09 2015
From _Daniel Forgues_, Mar 09 2015: (Start)
The a(3) = 14 = 4 + 6 + 4 partitions of 3 objects of 2 colors are:
4 partitions for the integer partition of 3 = 1 + 1 + 1:
  01: {{b}, {b}, {b}}
  02: {{b}, {b}, {w}}
  03: {{b}, {w}, {w}}
  04: {{w}, {w}, {w}}
6 partitions for the integer partition of 3 = 1 + 2:
  05: {{b}, {b,b}}
  06: {{w}, {b,b}}
  07: {{b}, {w,b}}
  08: {{w}, {w,b}}
  09: {{b}, {w,w}}
  10: {{w}, {w,w}}
4 partitions for the integer partition of 3 = 3:
  11: {{b,b,b}}
  12: {{w,b,b}}
  13: {{w,w,b}}
  14: {{w,w,w}}
The a(2) = 6 = 3 + 3 partitions of 2 objects of 2 colors are:
3 partitions for the integer partition of 2 = 1 + 1:
  01: {{b}, {b}}
  02: {{b}, {w}}
  03: {{w}, {w}}
3 partitions for the integer partition of 2 = 2:
  04: {{b,b}}
  05: {{w,b}}
  06: {{w,w}}
The a(1) = 2 partitions of 1 object of 2 colors are:
2 partitions for the integer partition of 1 = 1:
  01: {{b}}
  02: {{w}}
a(0) = 1: the empty partition, since empty sum is 0.
Triangle(sort of, since n_th row has p(n) = A000041 terms):
  1:  2
  2:  3, 3
  3:  4, 6, 4
  4:  5, 9, 6, 8, 5
  5:  6, ?, ?, ?, ?, ?, 6
  6:  7, ?, ?, ?, ?, ?, ?, ?, ?, ?, 7
Can we find a recurrence relation? (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Exercise 7.99, p. 484 and pp. 548-549.

Crossrefs

Row sums of A054225.
Column k=2 of A075196.

Programs

  • Maple
    mul( (1-x^i)^(-i-1),i=1..80); series(%,x,80); seriestolist(%);
    # second Maple program:
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> n+1): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    max = 31; f[x_] = Product[ 1/(1-x^k)^(k+1), {k, 1, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 08 2011, after g.f. *)
    etr[p_] := Module[{b}, b[n_] := b[n] = Module[{d, j}, If[n==0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]]; b]; a = etr[#+1&]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 23 2015, after Alois P. Heinz *)
  • PARI
    a(n)=polcoeff(prod(i=1,n,(1-x^i+x*O(x^n))^-(i+1)),n)

Formula

EULER transform of b(n) = n+1.
a(n) ~ Zeta(3)^(13/36) * exp(1/12 - Pi^4/(432*Zeta(3)) + Pi^2 * n^(1/3) / (3*2^(4/3)*Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3) / 2^(2/3)) / (A * 2^(23/36) * 3^(1/2) * Pi * n^(31/36)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Mar 07 2015
a(n) = A089353(n+m, m), n >= 1, for each m >= n. a(0) =1. See the Stanley reference, Exercise 7.99. - Wolfdieter Lang, Mar 09 2015
G.f.: exp(Sum_{k>=1} (sigma_1(k) + sigma_2(k))*x^k/k). - Ilya Gutkovskiy, Aug 11 2018

Extensions

Edited by Christian G. Bower, Sep 07 2002
New name from Joerg Arndt, Mar 09 2015
Restored 1995 name. - N. J. A. Sloane, Mar 09 2015