A005413 Number of non-vanishing Feynman diagrams of order 2n+1 for the electron-electron-photon proper vertex function in quantum electrodynamics (QED).
1, 1, 7, 72, 891, 12672, 202770, 3602880, 70425747, 1503484416, 34845294582, 872193147840, 23469399408510, 676090493459712, 20771911997290116, 678287622406488192, 23466105907996232835, 857623856612704266240
Offset: 0
Examples
G.f. = 1 + x + 7*x^2 + 72*x^3 + 891*x^4 + 12672*x^5 + 202770*x^6 + 3602880*x^7 + ...
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980, pages 466-467.
Links
- Robert Coquereaux, Table of n, a(n) for n = 0..250
- P. Cvitanovic, B. Lautrup and R. B. Pearson, The number and weights of Feynman diagrams, Phys. Rev. D18, pp. 1939-1949 (1978).
- Kevin Hartnett, Physicists uncover strange numbers in particle collisions, Quanta Magazine, November 15 2016.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 310.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
- Wikipedia, Feynman diagram
Crossrefs
Programs
-
Haskell
a005413 n = a005413_list !! (n-1) a005413_list = 1 : zipWith (*) [1 ..] (zipWith (+) (tail a005412_list) (zipWith (*) [4, 6 ..] a005413_list)) -- Reinhard Zumkeller, Jan 24 2014
-
Mathematica
a[n_]:= SeriesCoefficient[(4*x*(-2*x + (1 - BesselK[1, -(1/(4*x))]/BesselK[0, -(1/(4*x))])))/ (1 - BesselK[1, -(1/(4*x))]/BesselK[0, -(1/(4*x))])^3, {x,0,n}] (* Robert Coquereaux, Sep 12 2014 *)
-
PARI
{a(n) = my(A); if( n<2, n>=0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2 * k - 2) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); (n-1) * (A[n] + 2 * n * A[n-1]))}; /* Michael Somos, Jul 24 2011 */
Formula
See recurrence in Martin-Kearney paper.
From Robert Coquereaux, Sep 12 2014: (Start)
The g.f. for this sequence is (U - 1)/(U^3 x) where U is the g.f. for A005411.
G.f.: (4*x*(-2*x + (1 - K(1, -(1/(4*x))) / K(0, -(1/(4*x))))))/
(1 - K(1, -(1/(4*x))) / K(0, -(1/(4*x))))^3
where K(p, z) denotes the modified Bessel function of the second kind (order p, argument z). This is a small improvement of a result obtained in the 1980 book "Quantum Field Theory".
(End)
Extensions
Name clarified and reference added by Robert Coquereaux, Sep 12 2014
Comments