A005465 Number of n-dimensional hypotheses allowing for conditional independence.
0, 0, 1, 10, 70, 431, 2534, 14820, 88267, 542912, 3475978, 23253693, 162723444, 1190464900, 9092400633, 72370378750, 599168889634, 5150536258735, 45891028609826, 423144495659912, 4031842435506171, 39645279656283820, 401806832058661334, 4192631368792015237, 44992655908959220440
Offset: 0
Examples
From _Petros Hadjicostas_, Oct 10 2019: (Start) For two r.v.'s X and Y, there is one kind of independence: f(x,y) = f(x)*f(y) (where f denotes a p.d.f., joint or marginal). Thus, a(2) = 1. For three r.v.'s X, Y, and Z, we have (i) 3 pairwise independence relations (f(x,y) = f(x)*f(y), or f(x,z) = f(x)*f(z), or f(y,z) = f(y)*f(z)); (ii) a factorization of the form f(x,y,z) = f(x)*f(y)*f(z); (iii) 3 factorizations of the form f(x,y,z) = f(x,y)*f(z), or f(x,y,z) = f(y,z)*f(x), or f(x,y,z) = f(x,z)*f(y); [e.g. f(x,y,z) = f(x,y)*f(z) means random vector (X,Y) is jointly independent of variable Z] (iv) 3 conditional factorizations f(x,y|z) = f(x|z)*f(y|z), or f(y,z|x) = f(y|x)*f(z|x), or f(x,z|y) = f(x|y)*f(z|y). Hence, a(3) = 3 + 1 + 3 + 3 = 10. (See Mallows (1979) for some kinds of independence not considered by Good (1975, 1976).) For four variables X, Y, Z, W, we have several cases: (i) If we condition on a single variable, then we have 3 + 1 + 3 = 7 conditional independence cases (cases (i), (ii), and (iii) for n = 3) --> a total of C(4,1)*7 = 28. (ii) If we condition on 2 variables, we have 1 kind of independence; i.e., a total of C(4,2)*1 = 6. (iii) If we do not condition on any variables, we may consider: (A) the independence of every two r.v.'s --> C(4,2) = 6 cases. (B) the independence of every three variables: 1 + 3 = 4 factorizations (see the unconditional cases (ii) and (iii) above for the case n=3) --> a total of C(4,3)*4 = 16 factorizations. (C) the factorizations f(x,y,z,w) = f(x)*f(y)*f(z)*f(w), or = f(x,y,z)*f(z), or = f(x,z,w)*f(y), or = f(x,y,w)*f(z), or f(y,z,w)*f(x), or = f(x,y)*f(z,w), or = f(x,z)*f(y,w), or = f(x,w)*f(y,z), or = f(x,w)*f(y)*f(z), etc. --> a total of 15-1 = 14 factorizations. Hence, a(4) = 28 + 6 + 6 + 16 + 14 = 70. (End)
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- I. J. Good, The number of hypotheses of independence for a random vector or for a multidimensional contingency table, and the Bell numbers, Iranian J. Science and Technology, 4, (1975), 77-83.
- I. J. Good, On the application of symmetric Dirichlet distributions and their mixtures to contingency tables, Ann. Statist. 4 (1976), no. 6, 1159-1189.
- C. L. Mallows, How many independence hypotheses are there?, J. Statist. Comput. Simul. 9 (1979), 235-236.
- Wikipedia, I. J. Good.
Programs
-
Magma
[Bell(n+2) -Bell(n+1) -3^n: n in [0..30]]; // G. C. Greubel, Feb 23 2022
-
Mathematica
With[{nn=30},CoefficientList[Series[Exp[Exp[x]+2x-1]-Exp[3x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 04 2015 *)
-
Sage
[bell_number(n+2) -bell_number(n+1) -3^n for n in (0..30)] # G. C. Greubel, Feb 23 2022
Formula
E.g.f.: exp(exp(x)+2*x-1) - exp(3*x).
From Petros Hadjicostas, Oct 10 2019: (Start)
a(n) = Sum_{k = 2..n} Sum_{m = 2..k} binomial(n,k) * binomial(k,m) * (Bell(m) - 1), where Bell(m) = A000110(m) and Bell(m) - 1 = A058692(m).
a(n) = Sum_{k = 2..n} (Bell(k+1) - 2^k) * binomial(n,k) = Sum_{k = 2..n} A058681(k)*binomial(n,k). (End)
From G. C. Greubel, Feb 23 2022: (Start)
a(n) = Sum_{j=0..n} ( binomial(n,j)*2^j*Bell(n-j) ) - 3^n [Good, Iranian J. Sci. Tech., pg. 80, eq (10)].
a(n) = Bell(n+2) - Bell(n+1) - 3^n. (End)
Extensions
More terms from N. J. A. Sloane, Jun 26 2015
Comments