cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005490 Number of partitions of [n] where the first k elements are marked (0 <= k <= n-1) and at least k blocks contain their own index.

Original entry on oeis.org

1, 4, 13, 44, 163, 666, 2985, 14550, 76497, 430746, 2582447, 16403028, 109918745, 774289168, 5715471605, 44087879136, 354521950931, 2965359744446, 25749723493073, 231719153184018, 2157494726318233, 20753996174222510, 205985762120971167, 2106795754056142536
Offset: 1

Views

Author

Keywords

Comments

Old name was: From expansion of falling factorials.

Examples

			a(3) = 13 = 5 + 5 + 3: 123, 12|3, 13|2, 1|23, 1|2|3, 1'23, 1'2|3, 1'3|2, 1'|23, 1'|2|3, 1'3|2', 1'|2'3, 1'|2'|3.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, 1, b(n-1, m+1)+m*b(n-1, m))
        end:
    a:= n-> add(b(n-k, k), k=0..n-1):
    seq(a(n), n=1..24);  # Alois P. Heinz, Jan 05 2022
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, 1, b[n - 1, m + 1] + m*b[n - 1, m]];
    a[n_] := Sum[b[n - k, k], {k, 0, n - 1}];
    Table[a[n], {n, 1, 24}] (* Jean-François Alcover, Apr 24 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{i=1..n} b(n, i) where b(n, 1) = n and b(n+1, i+1) = (n-i) * b(n, i) + b(n+1, i) [From Whitehead]. - Sean A. Irvine, Jul 01 2016
From Alois P. Heinz, Jan 05 2022: (Start)
a(n) = Sum_{k=0..n-1} A108087(n-k,k).
a(n) = A000110(n) + Sum_{k=1..n-1} A259691(n,k)/k.
a(n) = A347420(n) - 1.
a(n) mod 2 = n mod 2 = A000035(n). (End)

Extensions

More terms from Sean A. Irvine, Jul 01 2016
New name from Alois P. Heinz, Jan 07 2022