A005517 Smallest label f(T) given to a rooted tree T with n nodes in Matula-Goebel labeling.
1, 2, 3, 5, 9, 15, 25, 45, 75, 125, 225, 375, 625, 1125, 1875, 3125, 5625, 9375, 15625, 28125, 46875, 78125, 140625, 234375, 390625, 703125, 1171875, 1953125, 3515625, 5859375, 9765625, 17578125, 29296875, 48828125
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Arthur H. Busch, A Note on the Number of Hamiltonian Paths in Strong Tournaments, Electronic Journal of Combinatorics, N3 (2006).
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, Graphs with maximal and minimal Matula numbers, Bulletin CVII Acad. Serbe, Sciences Math., 107, No. 19, 1994, 65-74.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for sequences related to Matula-Goebel numbers
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
- Index entries for linear recurrences with constant coefficients, signature (0,0,5).
Programs
-
Maple
a := proc (n) if n = 1 then 1 elif n = 2 then 2 elif `mod`(n, 3) = 0 then 3*5^((1/3)*n-1) elif `mod`(n, 3) = 1 then 5^((1/3)*n-1/3) else 9*5^((1/3)*n-5/3) end if end proc: seq(a(n), n = 1 .. 34); # Emeric Deutsch, Apr 15 2012 A005517:=(-1-2*z-3*z**2+z**4)/(-1+5*z**3); # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
Join[{1,2},LinearRecurrence[{0,0,5},{3,5,9},40]] (* Harvey P. Dale, Feb 25 2012 *) a[n_] := Which[n == 1, 1, n == 2, 2, Mod[n, 3] == 0, 3*5^((1/3)*n-1), Mod[n, 3] == 1, 5^((1/3)*n-1/3), True, 9*5^((1/3)*n-5/3)]; Table[a[n], {n, 1, 34}] (* Jean-François Alcover, Mar 06 2014, after Emeric Deutsch *)
Formula
a(1)=1; a(2)=2; a(n) = 3*5^((n-3)/3) if n=0 (mod 3); a(n)=5^((n-1)/3) if n>=4 and n=1 (mod 3); a(n)=9*5^((n-5)/3) if n>=5 and n = 2 (mod 3) (see the Gutman and Ivic 1994 paper). - Emeric Deutsch, Apr 15 2012
G.f.: z*(1+2*z+3*z^2-z^4)/(1-5*z^3) (conjectured by Simon Plouffe).
a(n+3) = 5*a(n) for n >= 3 under plausible assumptions about growth of prime numbers. - David W. Wilson, Jul 05 2001
Comments