A005529 Primitive prime factors of the sequence k^2 + 1 (A002522) in the order that they are found.
2, 5, 17, 13, 37, 41, 101, 61, 29, 197, 113, 257, 181, 401, 97, 53, 577, 313, 677, 73, 157, 421, 109, 89, 613, 1297, 137, 761, 1601, 353, 149, 1013, 461, 1201, 1301, 541, 281, 2917, 3137, 673, 1741, 277, 1861, 769, 397, 241, 2113, 4357, 449, 2381, 2521, 5477
Offset: 1
Keywords
References
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 246.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. Todd, Table of Arctangents. National Bureau of Standards, Washington, DC, 1951, p. vi.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Stormer Number.
- Eric Weisstein's World of Mathematics, Primitive Prime Factor
Programs
-
Magma
V:=[]; for n in [1..75] do p:=Max([ x[1]: x in Factorization(n^2+1) ]); if not p in V then Append(~V, p); end if; end for; V; // Klaus Brockhaus, Oct 29 2008
-
Mathematica
prms={}; Do[f=First/@FactorInteger[k^2+1]; p=Complement[f, prms]; prms=Join[prms, p], {k, 100}]; prms
-
PARI
do(n)=my(v=List(),g=1,m,t,f); for(k=1,n, m=k^2+1; t=gcd(m,g); while(t>1, m/=t; t=gcd(m,t)); f=factor(m)[,1]; if(#f, listput(v,f[1]); g*=f[1])); Vec(v) \\ Charles R Greathouse IV, Jun 11 2017
Extensions
Edited by T. D. Noe, Oct 02 2003
Comments