cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A083844 Number of primes of the form x^2 + 1 < 10^n.

Original entry on oeis.org

2, 4, 10, 19, 51, 112, 316, 841, 2378, 6656, 18822, 54110, 156081, 456362, 1339875, 3954181, 11726896, 34900213, 104248948, 312357934, 938457801, 2826683630, 8533327397, 25814570672, 78239402726, 237542444180, 722354138859, 2199894223892
Offset: 1

Views

Author

Harry J. Smith, May 05 2003

Keywords

Comments

It is conjectured that there are infinitely many primes of the form x^2 + 1 (and thus this sequence never becomes constant), but this has not been proved.
These primes can be found quickly using a sieve based on the fact that numbers of this form have at most one primitive prime factor (A005529). The sum of the reciprocals of these primes is 0.81459657... - T. D. Noe, Oct 14 2003

Examples

			a(3) = 10 because the only primes or the form x^2 + 1 < 10^3 are the ten primes: 2, 5, 17, 37, 101, 197, 257, 401, 577, 677.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 17.
  • P. Ribenboim, The Little Book of Big Primes. Springer-Verlag, 1991, p. 190.

Crossrefs

Cf. A005529 (primitive prime factors of the sequence k^2+1).

Programs

  • Mathematica
    c = 1; k = 2; (* except for the initial prime 2, all X's must be odd. *) Do[ While[ k^2 + 1 < 10^n, If[ PrimeQ[k^2 + 1], c++ ]; k += 2]; Print[c], {n, 1, 20}]

Extensions

Edited by Robert G. Wilson v, May 08 2003
More terms from T. D. Noe, Oct 14 2003
a(17)-a(22) from Robert Gerbicz, Apr 15 2009
a(23)-a(25) from Marek Wolf and Robert Gerbicz (code from Robert, computation done by Marek) Robert Gerbicz, Mar 13 2010
a(26)-a(28) from Jon Grantham, Jan 18 2017
a(28) corrected by Jon Grantham, Jan 30 2018

A248874 Primitive prime factors of the cyclotomic polynomial sequence Phi(10,k) in the order in which they occur.

Original entry on oeis.org

11, 61, 5, 41, 521, 101, 191, 331, 1181, 9091, 13421, 19141, 2411, 71, 31, 1531, 61681, 9041, 2251, 152381, 185641, 224071, 211, 5791, 9161, 431, 1021, 271, 53951, 401, 71261, 21821, 251, 4051, 1151041, 259631, 132631, 241, 6781, 1824841, 2031671, 41011
Offset: 1

Views

Author

Robert Price, Mar 14 2015

Keywords

Comments

Phi(10,k) = k^4 - k^3 + k^2 - k + 1.
Note that except for a(3), all terms end with the digit 1.

Crossrefs

Cf. A005529.

Programs

  • Mathematica
    prim = {}; Do[prim = Join[prim, Complement[First /@ FactorInteger[Cyclotomic[10, k]], prim]], {k, 1000}]; prim

A256144 Primitive prime factors of the cyclotomic polynomial sequence Phi(9,k) in the order in which they occur.

Original entry on oeis.org

3, 73, 757, 19, 829, 2467, 37, 1063, 262657, 333667, 1772893, 80749, 1609669, 397, 18973, 541, 21061, 109, 1270657, 991, 34327, 523, 29989, 64008001, 85775383, 127, 297613, 7792003, 2017, 4987, 5167, 308933353, 433, 8209, 444979, 14437, 41203, 729027001
Offset: 1

Views

Author

Robert Price, Mar 16 2015

Keywords

Comments

Phi(9,k) = k^6 + k^3 + 1.

Crossrefs

Programs

  • Mathematica
    prim = {}; Do[prim = Join[prim, Complement[First /@ FactorInteger[Cyclotomic[9, k]], prim]], {k, 1000}]; prim
  • PARI
    lista(nn) = {vs = []; for (n=1, nn, vp = factor(polcyclo(9,n))[,1]; for (i=1, #vp, if (!vecsearch(vs, vp[i]), print1(vp[i], ", "); vs = vecsort(concat(vs, vp[i]),,8););););} \\ Michel Marcus, Mar 20 2015

A256148 Primitive prime factors of the cyclotomic polynomial sequence Phi(3, k) (or Phi(6, k)) in the order in which they occur.

Original entry on oeis.org

3, 7, 13, 31, 43, 19, 73, 37, 157, 61, 211, 241, 307, 127, 421, 463, 79, 601, 757, 271, 67, 331, 151, 1123, 397, 97, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 181, 2551, 379, 919, 409, 2971, 3307, 163, 3541, 523, 3907, 613, 4423, 4831, 1657, 5113, 751
Offset: 1

Views

Author

Robert Price, Mar 16 2015

Keywords

Comments

Phi(3,k) = k^2 + k + 1 and Phi(6,k) = k^2 - k + 1.
Interesting scatter plot.
The terms correspond to the new primes of A081257 in the order of their appearance for n>1 and when A081257(m)>m. - Bill McEachen, Oct 13 2022

Crossrefs

Programs

  • Mathematica
    prim = {}; Do[prim = Join[prim, Complement[First /@ FactorInteger[Cyclotomic[6, k]], prim]], {k, 1000}]; prim
  • PARI
    lista(nn) = {vs = []; for (n=1, nn, vp = factor(polcyclo(6,n))[,1]; for (i=1, #vp, if (!vecsearch(vs, vp[i]), print1(vp[i], ", "); vs = vecsort(concat(vs, vp[i]),,8););););} \\ Michel Marcus, Mar 20 2015

A256145 Primitive prime factors of the cyclotomic polynomial sequence Phi(8,k) in the order in which they occur.

Original entry on oeis.org

2, 17, 41, 257, 313, 1297, 1201, 241, 193, 73, 137, 7321, 89, 233, 14281, 937, 1489, 65537, 41761, 113, 929, 3833, 160001, 97241, 3209, 139921, 331777, 11489, 26881, 6481, 614657, 353641, 3361, 409, 1129, 61681, 97, 6113, 1336337, 750313, 98801, 10529, 50857
Offset: 1

Views

Author

Robert Price, Mar 16 2015

Keywords

Comments

Phi(8,k) = k^4 + 1.

Crossrefs

Programs

  • Mathematica
    prim = {}; Do[prim = Join[prim, Complement[First /@ FactorInteger[Cyclotomic[8, k]], prim]], {k, 1000}]; prim
  • PARI
    lista(nn) = {vs = []; for (n=1, nn, vp = factor(polcyclo(8,n))[,1]; for (i=1, #vp, if (!vecsearch(vs, vp[i]), print1(vp[i], ", "); vs = vecsort(concat(vs, vp[i]),,8););););} \\ Michel Marcus, Mar 20 2015

A256146 Primitive prime factors of the cyclotomic polynomial sequence Phi(7,k) in the order in which they occur.

Original entry on oeis.org

7, 127, 1093, 43, 19531, 55987, 29, 4733, 337, 547, 239, 4649, 45319, 659, 4943, 5229043, 8108731, 1743463, 113, 25646167, 449, 80207, 701, 70841, 71, 32719, 631, 3319, 16968421, 5336717, 28771, 321272407, 368089, 4422461, 88009573, 93997, 917087137, 122921
Offset: 1

Views

Author

Robert Price, Mar 16 2015

Keywords

Comments

Phi(7,k) = k^6 + k^5 + k^4 + k^3 + k^2 + k + 1.

Crossrefs

Programs

  • Mathematica
    prim = {}; Do[prim = Join[prim, Complement[First /@ FactorInteger[Cyclotomic[7, k]], prim]], {k, 1000}]; prim
  • PARI
    lista(nn) = {vs = []; for (n=1, nn, vp = factor(polcyclo(7,n))[,1]; for (i=1, #vp, if (!vecsearch(vs, vp[i]), print1(vp[i], ", "); vs = vecsort(concat(vs, vp[i]),,8););););} \\ Michel Marcus, Mar 20 2015

A256153 Primitive prime factors of the cyclotomic polynomial sequence Phi(5,k) in the order in which they occur.

Original entry on oeis.org

5, 31, 11, 71, 311, 2801, 151, 61, 41, 271, 3221, 22621, 30941, 3761, 4931, 88741, 2711, 911, 251, 40841, 245411, 292561, 346201, 521, 8641, 4561, 637421, 732541, 837931, 17351, 601, 1801, 39451, 22571, 49831, 101, 4271, 194681, 191, 401, 2625641, 579281
Offset: 1

Views

Author

Robert Price, Mar 16 2015

Keywords

Comments

Phi(5,k) = k^4 + k^3 + k^2 + k + 1.
All terms end with the digit 1.

Crossrefs

Programs

  • Mathematica
    prim = {}; Do[prim = Join[prim, Complement[First /@ FactorInteger[Cyclotomic[5, k]], prim]], {k, 1000}]; prim
  • PARI
    lista(nn) = {vs = []; for (n=1, nn, vp = factor(polcyclo(5,n))[,1]; for (i=1, #vp, if (!vecsearch(vs, vp[i]), print1(vp[i], ", "); vs = vecsort(concat(vs, vp[i]),,8););););} \\ Michel Marcus, Mar 20 2015

A120294 Numerator of determinant of n X n matrix with elements M[j,j] = (i+j)/(i+j-1).

Original entry on oeis.org

2, 5, 1, 17, 13, 37, 1, 1, 41, 101, 61, 29, 1, 197, 113, 257, 1, 1, 181, 401, 1, 97, 53, 577, 313, 677, 73, 157, 421, 1, 1, 1, 109, 89, 613, 1297, 137, 1, 761, 1601
Offset: 1

Views

Author

Alexander Adamchuk, Jul 10 2006

Keywords

Comments

Some a(n) are equal to 1 (for n=3,7,8,13,17,18,21,30,31,32,38..=A002312 Arc-cotangent reducible numbers or non-Stormer numbers). All other a(n) (for n=1,2,4,5,6,9,10,11,14,15,16,19,20,22,23..=A005528 Stormer numbers or arc-cotangent irreducible numbers, largest prime factor of n^2 + 1 is >= 2n.) belong to A005529 - Primitive prime factors of the sequence k^2 + 1 (A002522) in the order that they are found. Matrix M[i,j] = (i+j)/(i+j-1) = 1 + 1/(i+j-1) is a sum of n X n unit matrix and n X n Hilbert Matrix. Denominator of determinant of matrix M[i,j] equals determinant of inverse Hilbert matrix A005249.

Crossrefs

Programs

  • Mathematica
    Numerator[Table[Det[Table[(i+j)/(i+j-1),{i,1,n},{j,1,n}]],{n,1,40}]]

Formula

a(n) = numerator[Det[Table[(i+j)/(i+j-1),{i,1,n},{j,1,n}]]].

A144861 Primitive prime factors of the sequence 2k^2 - 1 in the order in which they are first found.

Original entry on oeis.org

7, 17, 31, 71, 97, 127, 23, 199, 241, 41, 337, 449, 73, 577, 647, 103, 47, 881, 967, 151, 1151, 1249, 193, 1567, 257, 113, 89, 311, 2311, 79, 2591, 2887, 3041, 457, 3361, 3527, 3697, 4049, 4231, 631, 271, 4801, 4999, 743, 5407, 137, 263, 6271, 6961, 313, 1063
Offset: 2

Views

Author

Bernhard Helmes (pi(AT)devalco.de), Sep 23 2008

Keywords

Comments

Every Mersenne prime number appears on this sequence. a(n) mod 8 = 1 or 7.

Crossrefs

Programs

  • Mathematica
    Rest[DeleteDuplicates[#[[1]]&/@(Flatten[FactorInteger/@(2*Range[100]^2-1),1])]] (* Harvey P. Dale, Nov 15 2014 *)

Extensions

Definition clarified by Harvey P. Dale, Nov 15 2014
Showing 1-9 of 9 results.