A331942 a(n) = number of primes of the form P(k) = k^2 + 1 <= 10^n as predicted by the Hardy and Littlewood Conjecture F, rounded to nearest integer. The actual number of primes is A083844(n).
1, 4, 9, 20, 48, 121, 317, 855, 2356, 6609, 18787, 53970, 156385, 456404, 1340088, 3955219, 11726332, 34903256, 104251560, 312353236, 938461459, 2826668497, 8533343468, 25814350227, 78239112814, 237541788793, 722354115787, 2199893807666, 6708847354653, 20485514756657
Offset: 1
Keywords
Links
- Keith Conrad, Hardy-Littlewood Constants, (2003).
Programs
-
PARI
C=0.68640673140912300455609634836350943408916655062787977896811707366392; x=1.0;S10=sqrt(10);for(k=1,30,x*=s10;print1(round(C*intnum(y=2,x,1/log(y))),", "))
Formula
b(m) = round (C * Integral_{x=2..m} 1/log(x) dx), with C ~= 0.6864067314..., the Hardy-Littlewood constant for k^2 + 1 (A331941); a(n) = b(10^(n/2)).
Comments