cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005536 a(0) = 0; thereafter a(2n) = n - a(n) - a(n-1), a(2n+1) = n - 2a(n) + 1.

Original entry on oeis.org

0, 1, 0, 0, 1, 3, 3, 4, 3, 3, 1, 0, 0, 1, 0, 0, 1, 3, 3, 4, 6, 9, 10, 12, 12, 13, 12, 12, 13, 15, 15, 16, 15, 15, 13, 12, 12, 13, 12, 12, 10, 9, 6, 4, 3, 3, 1, 0, 0, 1, 0, 0, 1, 3, 3, 4, 3, 3, 1, 0, 0, 1, 0, 0, 1, 3, 3, 4, 6, 9, 10, 12, 12, 13, 12, 12, 13, 15, 15, 16, 18, 21, 22, 24, 27, 31, 33
Offset: 0

Views

Author

Keywords

Comments

A "Von Koch" sequence generated by the first Feigenbaum symbolic sequence.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. G. Stanton, W. L. Kocay and P. H. Dirksen, Computation of a combinatorial function, pp. 569-578 of C. J. Nash-Williams and J. Sheehan, editors, Proceedings of the Fifth British Combinatorial Conference 1975. Utilitas Math., Winnipeg, 1976.

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[n == 0, 0, hn = Floor[n/2]; If[OddQ[n], hn - 2 a[hn] + 1, hn - a[hn] - a[hn - 1]]]; t = Table[a[n], {n, 0, 100}] (* T. D. Noe, Mar 22 2012 *)
  • PARI
    a(n)=-n*(n-2)+3*sum(k=1,n-1,sum(i=1,k,abs(subst(Pol(binary(i+1))- Pol(binary(i)),x,1)%2))) \\ Benoit Cloitre, May 29 2003
    
  • PARI
    a(n)=polcoeff(1/(1-x)^2*sum(k=0,10, (-1)^k*x^2^k/(1+x^2^k)) +O(x^(n+1)),n)
    
  • Python
    from sympy.ntheory import digits
    def A005536(n): return sum(sum((0,1,-1,0)[i] for i in digits(m,4)[1:]) for m in range(n+1)) # Chai Wah Wu, Jul 19 2024

Formula

Partial sums of A065359. a(n) = Sum_{i=0..n} Sum_{k=0..i} (-1)^k*(floor(i/2^k) - 2*floor(i/2^(k+1))). - Benoit Cloitre, Mar 28 2004
G.f.: (1/(1-x)^2) * Sum_{k>=0} (-1)^k*x^2^k/(1 + x^2^k). - Ralf Stephan, Apr 27 2003
a(n) = -n*(n-2) + 3*Sum_{k=1..n-1} Sum_{i=1..k} A035263(i+1), where A035263 is the first Feigenbaum symbolic sequence. - Benoit Cloitre, May 29 2003

Extensions

More terms and better description from Ralf Stephan, Sep 13 2003
a(0)=0 added to data and offset changed by N. J. A. Sloane, Jun 16 2021 at the suggestion of Georg Fischer.