cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A082978 Duplicate of A005536.

Original entry on oeis.org

1, 0, 0, 1, 3, 3, 4, 3, 3, 1, 0, 0, 1, 0, 0, 1, 3, 3, 4, 6, 9, 10, 12, 12, 13, 12, 12, 13, 15, 15
Offset: 1

Views

Author

Keywords

A065359 Alternating bit sum for n: replace 2^k with (-1)^k in binary expansion of n.

Original entry on oeis.org

0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2, -1, 0, 1, -1, 0, 1, 2, 0, 1, 2, 3, 1, 2, 0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2, -1, 0, 1, -1, 0, -2, -1, -3, -2, -1, 0, -2, -1, 0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2, -1, 0, 1, -1, 0, 1, 2, 0, 1, 2, 3, 1, 2, 0, 1, -1, 0, 1, 2, 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 1, 2, 0, 1, 2, 3, 1, 2, 0, 1, -1, 0, 1, 2, 0, 1, -1, 0, -2
Offset: 0

Views

Author

Marc LeBrun, Oct 31 2001

Keywords

Comments

Notation: (2)[n](-1)
From David W. Wilson and Ralf Stephan, Jan 09 2007: (Start)
a(n) is even iff n in A001969; a(n) is odd iff n in A000069.
a(n) == 0 (mod 3) iff n == 0 (mod 3).
a(n) == 0 (mod 6) iff (n == 0 (mod 3) and n/3 not in A036556).
a(n) == 3 (mod 6) iff (n == 0 (mod 3) and n/3 in A036556). (End)
a(n) = A030300(n) - A083905(n). - Ralf Stephan, Jul 12 2003
From Robert G. Wilson v, Feb 15 2011: (Start)
First occurrence of k and -k: 0, 1, 2, 5, 10, 21, 42, 85, ..., (A000975); i.e., first 0 occurs for 0, first 1 occurs for 1, first -1 occurs at 2, first 2 occurs for 5, etc.;
a(n)=-3 only if n mod 3 = 0,
a(n)=-2 only if n mod 3 = 1,
a(n)=-1 only if n mod 3 = 2,
a(n)= 0 only if n mod 3 = 0,
a(n)= 1 only if n mod 3 = 1,
a(n)= 2 only if n mod 3 = 2,
a(n)= 3 only if n mod 3 = 0, ..., . (End)
a(n) modulo 2 is the Prouhet-Thue-Morse sequence A010060. - Philippe Deléham, Oct 20 2011
In the Koch curve, number the segments starting with n=0 for the first segment. The net direction (i.e., the sum of the preceding turns) of segment n is a(n)*60 degrees. This is since in the curve each base-4 digit 0,1,2,3 of n is a sub-curve directed respectively 0, +60, -60, 0 degrees, which is the net 0,+1,-1,0 of two bits in the sum here. - Kevin Ryde, Jan 24 2020

Examples

			Alternating bit sum for 11 = 1011 in binary is 1 - 1 + 0 - 1 = -1, so a(11) = -1.
		

Crossrefs

Cf. A005536 (partial sums), A056832 (abs first differences), A010060 (mod 2), A039004 (indices of 0's).
Cf. also A004718.
Cf. analogous sequences for bases 3-10: A065368, A346688, A346689, A346690, A346691, A346731, A346732, A055017 and also A373605 (for primorial base).

Programs

  • Haskell
    a065359 0 = 0
    a065359 n = - a065359 n' + m where (n', m) = divMod n 2
    -- Reinhard Zumkeller, Mar 20 2015
    
  • Maple
    A065359 := proc(n) local dgs ; dgs := convert(n,base,2) ; add( -op(i,dgs)*(-1)^i,i=1..nops(dgs)) ; end proc: # R. J. Mathar, Feb 04 2011
  • Mathematica
    f[0]=0; f[n_] := Plus @@ (-(-1)^Range[ Floor[ Log2@ n + 1]] Reverse@ IntegerDigits[n, 2]); Array[ f, 107, 0]
  • PARI
    a(n) = my(s=0, u=1); for(k=0,#binary(n)-1,s+=bittest(n,k)*u;u=-u);s /* Washington Bomfim, Jan 18 2011 */
    
  • PARI
    a(n) = my(b=binary(n)); b*[(-1)^k|k<-[-#b+1..0]]~; \\ Ruud H.G. van Tol, Oct 16 2023
    
  • PARI
    a(n) = if(n==0, 0, 2*hammingweight(bitand(n, ((4<<(2*logint(n,4)))-1)/3)) - hammingweight(n)) \\ Andrew Howroyd, Dec 14 2024
    
  • Python
    def a(n):
        return sum((-1)**k for k, bi in enumerate(bin(n)[2:][::-1]) if bi=='1')
    print([a(n) for n in range(107)]) # Michael S. Branicky, Jul 13 2021
    
  • Python
    from sympy.ntheory import digits
    def A065359(n): return sum((0,1,-1,0)[i] for i in digits(n,4)[1:]) # Chai Wah Wu, Jul 19 2024

Formula

G.f.: (1/(1-x)) * Sum_{k>=0} (-1)^k*x^2^k/(1+x^2^k). - Ralf Stephan, Mar 07 2003
a(0) = 0, a(2n) = -a(n), a(2n+1) = 1-a(n). - Ralf Stephan, Mar 07 2003
a(n) = Sum_{k>=0} A030308(n,k)*(-1)^k. - Philippe Deléham, Oct 20 2011
a(n) = -a(floor(n/2)) + n mod 2. - Reinhard Zumkeller, Mar 20 2015
a(n) = A139351(n) - A139352(n). - Kevin Ryde, Jan 24 2020
G.f. A(x) satisfies: A(x) = x / (1 - x^2) - (1 + x) * A(x^2). - Ilya Gutkovskiy, Jul 28 2021
a(n) = A195017(A019565(n)). - Antti Karttunen, Jun 19 2024

Extensions

More terms from Ralf Stephan, Jul 12 2003

A085009 "Von Koch" sequence generated by {1,1,2}.

Original entry on oeis.org

2, 0, 5, 8, 9, 8, 5, 0, 2, 2, 0, 5, 8, 9, 17, 23, 27, 29, 29, 27, 32, 35, 36, 35, 32, 27, 29, 29, 27, 23, 17, 9, 8, 5, 0, 2, 2, 0, 5, 8, 9, 8, 5, 0, 2, 2, 0, 5, 8, 9, 17, 23, 27, 29, 29, 27, 32, 35, 36, 44, 50, 54, 65, 74, 81, 86, 89, 90, 98, 104, 108, 110, 110, 108, 113, 116, 117, 116
Offset: 1

Views

Author

Benoit Cloitre, Jun 17 2003

Keywords

Comments

The graph of the sequence is similar to, for example, A071992

Crossrefs

Cf. A085006, A085007, A085009, A005536 ("Von Koch" sequence generated by {1, 2}).

Formula

a(n)= n+2 + sum(k=1, n, A085008(k))

A332205 a(n) is the imaginary part of f(n) defined by f(0) = 0, and f(n+1) = f(n) + g((1+i)^(A065359(n) mod 8)) (where g(z) = z/gcd(Re(z), Im(z)) and i denotes the imaginary unit).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 2, 2, 3, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 3, 4, 5, 6, 7, 7, 8, 7, 7, 8, 9, 9, 10, 9, 9, 8, 7, 7, 8, 7, 7, 6, 5, 4, 3, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 3, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 3, 4, 5, 6, 7, 7, 8, 7, 7, 8, 9, 9, 10, 11, 12, 13, 14
Offset: 0

Views

Author

Rémy Sigrist, Feb 07 2020

Keywords

Comments

Looks much like A005536, in particular in respect of its symmetries of scale (compare the scatterplots). - Peter Munn, Jun 21 2021

Crossrefs

Cf. A005536, A007052, A065359, A332204 (real part and additional comments), A332206 (positions of 0's, cf. A001196).

Programs

  • Mathematica
    A065359[0] = 0;
    A065359[n_] := -Total[(-1)^PositionIndex[Reverse[IntegerDigits[n, 2]]][1]];
    g[z_] := z/GCD[Re[z], Im[z]];
    Module[{n = 0}, Im[NestList[# + g[(1+I)^A065359[n++]] &, 0, 100]]] (* Paolo Xausa, Aug 28 2024 *)
  • PARI
    \\ See Links section.

Formula

a(2^(2*k-1)) = A007052(k) for any k >= 0.
a(4^k-m) = a(m) for any k >= 0 and m = 0..4^k.

A092106 Fractal mountains in base 3.

Original entry on oeis.org

0, 1, 3, 2, 2, 3, 1, 0, 0, 1, 3, 6, 6, 7, 9, 8, 8, 9, 11, 14, 18, 19, 21, 24, 24, 25, 27, 26, 26, 27, 25, 24, 24, 21, 19, 18, 18, 19, 21, 20, 20, 21, 19, 18, 18, 19, 21, 24, 24, 25, 27, 26, 26, 27, 25, 24, 24, 21, 19, 18, 14, 11, 9, 8, 8, 9, 7, 6, 6, 3, 1, 0, 0, 1, 3, 2, 2, 3, 1, 0, 0, 1
Offset: 0

Views

Author

Benoit Cloitre, Mar 29 2004

Keywords

Comments

The graph of sequence presents fractal aspects.

Crossrefs

Cf. A005536 (fractal mountains in base 2).

Formula

a(n)=a(n, 3) where a(n, m)=sum(i=0, n, sum(k=0, i, (-1)^k*(floor(i/m^k)-m*floor(i/m^(k+1)))))
Showing 1-5 of 5 results.