A005560 Number of walks on square lattice. Column y=2 of A052174.
1, 3, 15, 45, 189, 588, 2352, 7560, 29700, 98010, 382239, 1288287, 5010005, 17177160, 66745536, 232092432, 901995588, 3173688180, 12342120700, 43861998180, 170724392916, 611947174608, 2384209771200, 8609646396000, 33577620944400, 122041737663300, 476432168185575
Offset: 2
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..1000
- R. K. Guy, Letter to N. J. A. Sloane, May 1990
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6, w_n'(2).
Programs
-
Magma
[Binomial(n+3, Ceiling(n/2))*Binomial(n+2, Floor(n/2)) - Binomial(n+3, Ceiling((n-1)/2))*Binomial(n+2, Floor((n-1)/2)): n in [0..30]]; // Vincenzo Librandi, Apr 03 2017
-
Maple
wnprime := proc(n,y) local k; if type(n-y,'even') then k := (n-y)/2 ; binomial(n+1,k)*(binomial(n,k)-binomial(n,k-1)) ; else k := (n-y-1)/2 ; binomial(n+1,k)*binomial(n,k+1)-binomial(n+1,k+1)*binomial(n,k-1) ; end if; end proc: A005560 := proc(n) wnprime(n,2) ; end proc: seq(A005560(n),n=2..20) ; # R. J. Mathar, Apr 02 2017
-
Mathematica
Table[Binomial[n+3, Ceiling[n/2]] Binomial[n+2, Floor[n/2]]-Binomial[n+3, Ceiling[(n-1)/2]] Binomial[n+2, Floor[(n-1)/2]], {n, 0, 30}] (* Vincenzo Librandi, Apr 03 2017 *)
-
PARI
{a(n)=binomial(n+3,ceil(n/2))*binomial(n+2,floor(n/2)) - binomial(n+3,ceil((n-1)/2))*binomial(n+2,floor((n-1)/2))}
Formula
a(n) = C(n+3, ceiling(n/2))*C(n+2, floor(n/2)) - C(n+3, ceiling((n-1)/2))*C(n+2, floor((n-1)/2)). - Paul D. Hanna, Apr 16 2004
Conjecture: (n-1)*(n-2)*(2*n+1)*(n+5)*(n+4)*a(n) -4*n*(n+1)*(2*n^2+4*n+19)*a(n-1) -16*n^2*(n-1)*(2*n+3)*(n+1)*a(n-2)=0. - R. J. Mathar, Apr 02 2017