cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005583 Coefficients of Chebyshev polynomials.

Original entry on oeis.org

2, 11, 36, 91, 196, 378, 672, 1122, 1782, 2717, 4004, 5733, 8008, 10948, 14688, 19380, 25194, 32319, 40964, 51359, 63756, 78430, 95680, 115830, 139230, 166257, 197316, 232841, 273296, 319176, 371008, 429352, 494802, 567987, 649572, 740259, 840788
Offset: 1

Views

Author

Keywords

Comments

If X is an n-set and Y a fixed 2-subset of X then a(n-5) is equal to the number of (n-5)-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
a(n-1) = risefac(n,5)/5! - risefac(n,3)/3! is for n >= 1 also the number of independent components of a symmetric traceless tensor of rank 5 and dimension n. Here risefac is the rising factorial. Put a(0) = 0. - Wolfdieter Lang, Dec 10 2015

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A005583:=-(-2+z)/(z-1)**6; # Simon Plouffe in his 1992 dissertation (this g.f. assumes offset 0)
  • PARI
    conv(u,v)=local(w); w=vector(length(u),i,sum(j=1,i,u[j]*v[i+1-j])); w;
    t(n)=n*(n+1)/2;
    u=vector(10,i,t(i));
    v=vector(10,i,t(i)-1);
    conv(u,v)
    
  • PARI
    a(n) = (1/120)*n*(n+9)*(n+3)*(n+2)*(n+1); \\ Joerg Arndt, Mar 05 2018

Formula

G.f.: x*(2-x)/(1-x)^6.
a(n) = binomial(n+4, n-1) + binomial(n+3, n-1) = (1/120)*n*(n+9)*(n+3)*(n+2)*(n+1).
a(n+1) = -A127672(10+n, n), n >= 0, with the coefficients of the Chebyshev C-polynomials A127672(n, k). - Wolfdieter Lang, Dec 10 2015
a(n) = Sum_{i=1..n} A000217(i)*A000096(n+1-i). - Bruno Berselli, Mar 05 2018
a(n) = binomial(n+3,5) + 2*binomial(n+3,4). - Yuchun Ji, May 23 2019
From Amiram Eldar, Feb 17 2023: (Start)
Sum_{n>=1} 1/a(n) = 40751/63504.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1360*log(2)/63 - 922961/63504. (End)

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 07 1999
More terms from Zerinvary Lajos, Jul 21 2006