cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005676 a(n) = Sum_{k=0..n} C(n-k,4*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 6, 16, 36, 71, 128, 220, 376, 661, 1211, 2290, 4382, 8347, 15706, 29191, 53824, 99009, 182497, 337745, 627401, 1167937, 2174834, 4046070, 7517368, 13951852, 25880583, 48009456, 89090436, 165392856, 307137901
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A306680.

Programs

  • Magma
    [&+[Binomial(n-k, 4*k): k in [0..n]]: n in [0..40]]; // Vincenzo Librandi, Sep 08 2017
  • Maple
    A005676:=(z-1)**3/(-1+4*z-6*z**2+4*z**3-z**4+z**5); # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1, 1}, {1, 1, 1, 1, 1}, 40] (* or *) CoefficientList[Series[(1 - x)^3 / ((1 - x)^4 - x^5), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 08 2017 *)

Formula

From Paul Barry, Jul 23 2004: (Start)
G.f.: (1-3x+3x^2-x^3)/(1-4x+6x^2-4x^3+x^4-x^5) = (1-x)^3/((1-x)^4-x^5).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, 4k).
a(n) = 4a(n-1)-6a(n-2)+4a(n-3)-a(n-4)+a(n-5). (End)

Extensions

More terms from James Sellers, Aug 21 2000