cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A098574 a(n) = Sum_{k=0..floor(n/7)} C(n-5*k,2*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 7, 11, 16, 22, 29, 38, 51, 71, 102, 149, 218, 316, 452, 639, 897, 1257, 1766, 2493, 3536, 5031, 7165, 10196, 14484, 20538, 29085, 41168, 58282, 82561, 117036, 165995, 235492, 334074, 473824, 671856, 952449, 1350078, 1913702
Offset: 0

Views

Author

Paul Barry, Sep 16 2004

Keywords

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x)/(1-2*x+x^2-x^7))) // G. C. Greubel, Feb 03 2018
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2*x+x^2-x^7), {x,0,50}], x] (* G. C. Greubel, Feb 03 2018 *)
  • PARI
    a(n) = sum(k=0, n\7, binomial(n-5*k, 2*k)); \\ Michel Marcus, Sep 06 2017
    
  • PARI
    x='x+O('x^30); Vec((1-x)/(1-2*x+x^2-x^7)) \\ G. C. Greubel, Feb 03 2018
    

Formula

G.f.: (1-x)/(1-2*x+x^2-x^7).

A217839 T(n,k)=Number of n element 0..1 arrays with each element the minimum of k adjacent elements of a random 0..1 array of n+k-1 elements.

Original entry on oeis.org

2, 2, 4, 2, 4, 8, 2, 4, 7, 16, 2, 4, 7, 12, 32, 2, 4, 7, 11, 21, 64, 2, 4, 7, 11, 17, 37, 128, 2, 4, 7, 11, 16, 27, 65, 256, 2, 4, 7, 11, 16, 23, 44, 114, 512, 2, 4, 7, 11, 16, 22, 34, 72, 200, 1024, 2, 4, 7, 11, 16, 22, 30, 52, 117, 351, 2048, 2, 4, 7, 11, 16, 22, 29, 42, 81, 189, 616
Offset: 1

Views

Author

R. H. Hardin Oct 12 2012

Keywords

Comments

Table starts
.....2....2....2....2...2...2...2...2...2...2...2...2...2...2
.....4....4....4....4...4...4...4...4...4...4...4...4...4...4
.....8....7....7....7...7...7...7...7...7...7...7...7...7...7
....16...12...11...11..11..11..11..11..11..11..11..11..11..11
....32...21...17...16..16..16..16..16..16..16..16..16..16..16
....64...37...27...23..22..22..22..22..22..22..22..22..22..22
...128...65...44...34..30..29..29..29..29..29..29..29..29..29
...256..114...72...52..42..38..37..37..37..37..37..37..37..37
...512..200..117...81..61..51..47..46..46..46..46..46..46..46
..1024..351..189..126..91..71..61..57..56..56..56..56..56..56
..2048..616..305..194.137.102..82..72..68..67..67..67..67..67
..4096.1081..493..296.205.149.114..94..84..80..79..79..79..79
..8192.1897..798..450.303.218.162.127.107..97..93..92..92..92
.16384.3329.1292..685.443.316.232.176.141.121.111.107.106.106
.32768.5842.2091.1046.644.452.331.247.191.156.136.126.122.121

Examples

			Some solutions for n=8 k=4
..0....0....1....0....1....0....1....1....0....1....0....0....0....0....0....0
..1....1....1....1....0....0....1....1....1....0....0....1....0....1....0....0
..1....1....1....1....0....1....0....1....1....0....1....0....1....0....0....0
..1....1....0....0....0....0....0....0....0....0....1....0....1....0....1....0
..1....1....0....0....0....0....0....0....0....0....1....0....1....0....1....1
..1....1....0....0....0....0....0....0....0....1....1....0....1....0....1....0
..1....0....0....0....0....0....0....0....0....1....1....0....0....1....1....0
..0....0....1....0....1....0....1....0....1....1....1....1....0....1....0....0
		

Crossrefs

Column 2 is A005251(n+3)
Column 3 is A005252(n+3)
Column 4 is A005253(n+3)
Column 5 is A005689(n+6)
Column 6 is A098574(n+6)
Diagonal is A000124

Formula

Empirical for columns 1-7: a(n) = 2*a(n-1) -a(n-2) +a(n-k-1)

A370722 a(n) = Sum_{k=0..floor(n/7)} binomial(n-4*k,3*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 5, 11, 21, 36, 57, 85, 122, 173, 249, 371, 575, 918, 1485, 2398, 3830, 6030, 9369, 14422, 22107, 33909, 52226, 80888, 125925, 196706, 307653, 480873, 750275, 1168085, 1815191, 2817518, 4371772, 6785606, 10539893, 16384908, 25488736
Offset: 0

Views

Author

Seiichi Manyama, Feb 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1, 0, 0, 0, 1}, Table[1, 7], 50] (* Paolo Xausa, Mar 15 2024 *)
  • PARI
    a(n) = sum(k=0, n\7, binomial(n-4*k, 3*k));
    
  • PARI
    my(N=50, x='x+O('x^N)); Vec((1-x)^2/((1-x)^3-x^7))

Formula

G.f.: (1-x)^2/((1-x)^3 - x^7).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-7).
Showing 1-3 of 3 results.