cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005721 Central quadrinomial coefficients.

Original entry on oeis.org

1, 4, 44, 580, 8092, 116304, 1703636, 25288120, 379061020, 5724954544, 86981744944, 1327977811076, 20356299454276, 313095240079600, 4829571309488760, 74683398325804080, 1157402982351003420, 17971185794898859248
Offset: 0

Views

Author

Keywords

Comments

Sum of squares of entries in the n-th row of triangle of quadrinomial coefficients A008287 (Pascal triangle of order 4). - Adi Dani, Jul 03 2011
Central coefficients in triangle A008287 ((1 + x + x^2 + x^3)^n), see link. - Zagros Lalo, Sep 25 2018

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 601, 602.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    List([0..20],n->Sum([0..Int(3*n/4)],k->(-1)^k*Binomial(2*n,k)*Binomial(5*n-4*k-1,3*n-4*k))); # Muniru A Asiru, Sep 26 2018
    
  • Magma
    [(&+[(-1)^k*Binomial(2*n,k)*Binomial(5*n-4*k-1,3*n-4*k): k in [0..Floor(3*n/4)]]): n in [0..30]]; // G. C. Greubel, Oct 06 2018
  • Maple
    F := (t^2-1)*(6*t+t^2+1)^(1/2)/(3*t^3+13*t^2+t-1); G := t/((t+1)^2*(6*t+t^2+1));
    Ginv := RootOf(numer(G-x),t); series(eval(F,t=Ginv),x=0,20);
    seq(coeff((1+x+x^2+x^3)^(2*n),x,3*n),n=0..50); # Robert Israel, Nov 01 2015
  • Mathematica
    Table[Sum[(-1)^k*Binomial[2*n,k]*Binomial[5*n-4*k-1,3*n-4*k],{k,0,3*n/4}],{n,0,25}] (* Adi Dani, Jul 03 2011 *)
    RecurrenceTable[{128*(n-1)*(2*n-3)*(2*n-1)*(5*n-1)*a[n-2] -8*(2*n-1)*(145*n^3-319*n^2+201*n-30)*a[n-1]+3*n*(3*n-2)*(3*n-1)*(5*n-6)*a[n]==0,
    a[0]==1,a[1]==4},a,{n,0,5000}] (* Bradley Klee, Jun 25 2018 *)
    a[n_] := a[n] = Sum[(2*n)!/((j - n)!*(3*n + i - 2*j)!*(j - 2*i)!*i!), {i, 0, n}, {j, n, 2*n}]; Table[a[n], {n, 0, 20}] (* Zagros Lalo, Sep 25 2018 *)
  • PARI
    a(n)={local(v=Vec((1+x+x^2+x^3)^n));sum(k=1,#v, v[k]^2);}
    
  • PARI
    a(n)=sum(k=0,3*n/4, (-1)^k*binomial(2*n,k)*binomial(5*n-4*k-1,3*n-4*k));
    
  • PARI
    vector(30, n, n--; polcoeff((1+x+x^2+x^3)^(2*n), (6*n)>>1)) \\ Altug Alkan, Nov 01 2015
    

Formula

a(n) = A005190(2*n) = A008287(2*n, 3*n).
G.f.: Let Z(x) be a solution of (-1+16*x)*(32*x-27)^2*Z^6+9*(-9+64*x)*(32*x-27)*Z^4+81*(80*x-27)*Z^2+729 = 0, with Z(0)=1. Compute a Puiseux series for Z(x) at x=0, then Z(x) in C[[x^(1/3)]]. Remove all non-integer powers of x. The result is the generating function for A005721. - Mark van Hoeij, Oct 29 2011
G.f.: F(G^(-1)(x)) where F(t) = (t^2-1)*(6*t+t^2+1)^(1/2)/(3*t^3+13*t^2+t-1) and G(t) = t/((t+1)^2*(6*t+t^2+1)). - Mark van Hoeij, Oct 30 2011
From Bradley Klee, Jun 25 2018: (Start)
128*(n-1)*(2*n-3)*(2*n-1)*(5*n-1)*a(n-2) - 8*(2*n-1)*(145*n^3-319*n^2+201*n-30)*a(n-1) + 3*n*(3*n-2)*(3*n-1)*(5*n-6)*a(n) = 0.
G.f. G(x) satisfies a Picard-Fuchs type differential equation, 0 = Sum_{m=0..5, n=0..3} M_{m,n} x^m*(d^n/dx^n G(x)), with integer matrix:
M={{ 24, -6, 0, 0},
{-768, 1488, -54, 0},
{6144, -16128, 2520, -27},
{ 0, 55296, -29568, 896},
{ 0, 0, 49152, -7936},
{ 0, 0, 0, 8192}}(End)
a(n) = sum_{k=0..floor(3n/4)} (-1)^k binomial(2n,k) * binomial(5n-4k-1,3n-4k). - Muniru A Asiru, Sep 26 2018
a(n) = Sum_{i=0..n} Sum_{j=n..2n}(f); f= ( (2*n)!/((j - n)!*(3*n + i - 2*j)!*(j - 2*i)!*i!) ); f=0 for (3*n + i - 2*j)<0 or (j - 2*i)<0. See also formula in Links section. - Zagros Lalo, Sep 27 2018