A295870 a(n) = binomial(3n,n)*CQC(n), where CQC(n) = A005721(n) = A005190(2n) is a central quadrinomial coefficient.
1, 12, 660, 48720, 4005540, 349260912, 31626298704, 2940502593600, 278788387440420, 26831860080682800, 2613367831568654160, 257012469788428710720, 25479526081439438845200, 2543092744417831625342400, 255292245777771431285140800, 25755871314484468746363582720
Offset: 0
Keywords
References
- D. Husemöller, Elliptic Curves, 2nd ed., New York: Springer, 2004.
- J. H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., New York: Springer, 2009.
Links
- J. Cremona, Elliptic Curves over Q, LMFDB 2017.
- B. Klee, The Virtues of X_{n+1} = (4+3*X_{n})/(3+2*X_{n}), seqfans mailing list, 2017.
- B. Klee, Geometric G.F. for Ramanujan Periods, seqfans mailing list, 2017.
- Brad Klee, Deriving Hypergeometric Picard-Fuchs Equations, Wolfram Demonstrations Project (2018).
- Bradley Klee, Phase Plane Geometry.
- M. Kontsevich and D. Zagier, Periods, Institut des Hautes Etudes Scientifiques 2001 IHES/M/01/22.
- P. Paule and M. Schorn, FastZeil: the Paule/Schorn implementation of Gosper's and Zeilberger's algorithm, RISC 2017; Local copy, pdf file only, no active links
- D. Zeilberger, The Method of Creative Telescoping, Journal of Symbolic Computation, 11.3 (1991), 195-204.
Crossrefs
Programs
-
Mathematica
b[NN_]:=Total/@Table[((-1)^k)*Binomial[3*n,n]*Binomial[2*n,k]*Binomial[5*n-4*k-1,3*n-4*k],{n,0,NN},{k,0,Floor[3*n/4]}]; c1=8*(-30+201*n-319*n^2+145*n^3);c2=-8640*(n-5/3)*(n-4/3)*(n-1/5);c3=10*(n-6/5)*n^2;a[0]=1;a[1]=12;a[n0_]:=ReplaceAll[(c1/c3)*a[n0-1]+(c2/c3)*a[n0-2],{n->n0}]; ({#,SameQ[a/@Range[0, 15],#]}&@b[15])[[1]]
Formula
a(n) = Sum_{k=0..floor(3n/4)} ((-1)^k)*binomial(3*n,n)*binomial(2 *n, k)*binomial(5*n - 4*k - 1, 3*n - 4*k).
c1 = 8 *(-30 + 201*n - 319*n^2 + 145*n^3); c2 = -8640*(n - 5/3)*(n - 4/3)*(n - 1/5); c3 = 10*(n - 6/5)*n^2; a(0)=1; a(1)=12; a(n) = (c1/c3)*a(n-1) + (c2/c3)*a(n-2).
Comments