cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A349936 Central pentanomial coefficients.

Original entry on oeis.org

1, 5, 85, 1751, 38165, 856945, 19611175, 454805755, 10651488789, 251345549849, 5966636799745, 142330448514875, 3408895901222375, 81922110160246231, 1974442362935339179, 47705925773278538281, 1155170746105476171285, 28025439409568101909625, 681077893998769910221225
Offset: 0

Views

Author

Stefano Spezia, Dec 06 2021

Keywords

Comments

Largest coefficient of (Sum_{j=0..4} x^j)^(2*n).

Crossrefs

Central coefficients in triangle A035343.
Column s = 4 in A349933.

Programs

  • Mathematica
    T[n_,k_,s_]:=If[k==0,1,Coefficient[(Sum[x^i,{i,0,s}])^n,x^k]]; Table[T[2n,4n,4],{n,0,18}]

Formula

a(n) = T(2*n, 4*n, 4), where T(n, k, s) is the s-binomial coefficient defined as the coefficient of x^k in (Sum_{i=0..s} x^i)^n.
a(n) = A035343(2*n, 4*n) = [x^(4*n)] (Sum_{j=0..4} x^j)^(2*n).
From Vaclav Kotesovec, Dec 09 2021: (Start)
Recurrence: 2*n*(2*n - 1)*(3*n - 4)*(4*n - 7)*(4*n - 3)*(4*n - 1)*(6*n - 13)*(6*n - 7)*a(n) = 3*(4*n - 7)*(6*n - 13)*(10584*n^6 - 47628*n^5 + 84190*n^4 - 73965*n^3 + 33531*n^2 - 7272*n + 570)*a(n-1) - 75*(n-1)*(2*n - 3)*(4*n - 5)*(6*n - 1)*(504*n^4 - 2520*n^3 + 4160*n^2 - 2525*n + 476)*a(n-2) + 625*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(3*n - 1)*(4*n - 3)*(6*n - 7)*(6*n - 1)*a(n-3).
a(n) ~ 25^n / sqrt(8*Pi*n). (End)

A163269 T(n,k) = largest coefficient in the expansion of (1 + ... + x^(n-1))^(2*k).

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 20, 19, 4, 1, 70, 141, 44, 5, 1, 252, 1107, 580, 85, 6, 1, 924, 8953, 8092, 1751, 146, 7, 1, 3432, 73789, 116304, 38165, 4332, 231, 8, 1, 12870, 616227, 1703636, 856945, 135954, 9331, 344, 9, 1, 48620, 5196627, 25288120, 19611175, 4395456
Offset: 1

Views

Author

R. H. Hardin, Jul 24 2009

Keywords

Comments

T(n,k) = number of ways the sums of all components of two 1..n k-vectors can be equal.
T(n,k) is an odd polynomial in n of order 2*k-1.
Examples:
T(n,1) = n.
T(n,2) = (2/3)*n^3 + (1/3)*n.
T(n,3) = (11/20)*n^5 + (1/4)*n^3 + (1/5)*n.
T(n,4) = (151/315)*n^7 + (2/9)*n^5 + (7/45)*n^3 + (1/7)*n.
Table starts:
1 1 1 1 1 ...
2 6 20 70 252 ...
3 19 141 1107 8953 ...
4 44 580 8092 116304 ...
5 85 1751 38165 856945 ...
...

Examples

			For n = 3 and k = 2, (1 + x + x^2)^(2*2) = x^8 + 4*x^7 + 10*x^6 + 16*x^5 + 19*x^4 + 16*x^3 + 10*x^2 + 4*x + 1, whose largest coefficient is T(3,2) = 19.
		

Crossrefs

Removing the leftmost column of A349933 generates this sequence.
Cf. A273975.

Programs

  • PARI
    T(n,k) = polcoef(sum(i=0, n-1, x^i)^(2*k), k*(n-1)); \\ Michel Marcus, Jan 23 2024

Formula

T(n,k) = A273975(2*k, n, (n-1)*k). - Andrey Zabolotskiy, Jan 23 2024

A349934 Array read by ascending antidiagonals: A(n, s) is the n-th s-Catalan number.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 14, 15, 4, 1, 42, 91, 34, 5, 1, 132, 603, 364, 65, 6, 1, 429, 4213, 4269, 1085, 111, 7, 1, 1430, 30537, 52844, 19845, 2666, 175, 8, 1, 4862, 227475, 679172, 383251, 70146, 5719, 260, 9, 1, 16796, 1730787, 8976188, 7687615, 1949156, 204687, 11096, 369, 10, 1
Offset: 1

Views

Author

Stefano Spezia, Dec 06 2021

Keywords

Examples

			The array begins:
n\s |  1    2     3      4      5
----+----------------------------
  1 |  1    1     1      1      1 ...
  2 |  2    3     4      5      6 ...
  3 |  5   15    34     65    111 ...
  4 | 14   91   364   1085   2666 ...
  5 | 42  603  4269  19845  70146 ...
  ...
		

Crossrefs

Cf. A000012 (n=1), A220892 (n=4).
Cf. A000108 (s=1), A099251 (s=2), A264607 (s=3).
Cf. A349933.

Programs

  • Mathematica
    T[n_,k_,s_]:=If[k==0,1,Coefficient[(Sum[x^i,{i,0,s}])^n,x^k]]; A[n_,s_]:=T[2n,s n,s]-T[2n,s n+1,s]; Flatten[Table[A[n-s+1,s],{n,10},{s,n}]]
  • PARI
    T(n, k, s) = polcoef((sum(i=0, s, x^i))^n, k);
    A(n, s) = T(2*n, s*n, s) - T(2*n, s*n+1, s); \\ Michel Marcus, Dec 10 2021

Formula

A(n, s) = T(2*n, s*n, s) - T(2*n, s*n+1, s), where T(n, k, s) is the s-binomial coefficient defined as the coefficient of x^k in (Sum_{i=0..s} x^i)^n.
A(2, n) = A000027(n+1).
A(3, n) = A006003(n+1).
Showing 1-3 of 3 results.