cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A063260 Sextinomial (also called hexanomial) coefficient array.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 25, 27, 27, 25, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 80, 104, 125, 140, 146, 140, 125, 104, 80, 56, 35, 20, 10, 4, 1, 1, 5, 15, 35, 70, 126, 205, 305, 420, 540, 651, 735, 780
Offset: 0

Views

Author

Wolfdieter Lang, Jul 24 2001

Keywords

Comments

The sequence of step width of this staircase array is [1,5,5,...], hence the degree sequence for the row polynomials is [0,5,10,15,...]=A008587.
The column sequences (without leading zeros) are for k=0..5 those of the lower triangular array A007318 (Pascal) and for k=6..9: A062989, A063262-4. Row sums give A000400 (powers of 6). Central coefficients give A063419; see also A018901.
This can be used to calculate the number of occurrences of a given roll of n six-sided dice, where k is the index: k=0 being the lowest possible roll (i.e., n) and n*6 being the highest roll.

Examples

			The irregular table T(n, k) begins:
n\k 0 1 2  3  4  5  6  7  8  9 10 11 12 13 14 15
1:  1
2:  1 1 1  1  1  1
3:  1 2 3  4  5  6  5  4  3  2  1
4:  1 3 6 10 15 21 25 27 27 25 21 15 10  6  3  1
...reformatted - _Wolfdieter Lang_, Oct 31 2015
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77,78.

Crossrefs

The q-nomial arrays for q=2..5 are: A007318 (Pascal), A027907, A008287, A035343 and for q=7: A063265, A171890, A213652, A213651.
Columns for k=0..9 (with some shifts) are: A000012, A000027, A000217, A000292, A000332, A000389, A062989, A063262, A063263, A063264.

Programs

  • Maple
    #Define the r-nomial coefficients for r = 1, 2, 3, ...
    rnomial := (r,n,k) -> add((-1)^i*binomial(n,i)*binomial(n+k-1-r*i,n-1), i = 0..floor(k/r)):
    #Display the 6-nomials as a table
    r := 6:  rows := 10:
    for n from 0 to rows do
    seq(rnomial(r,n,k), k = 0..(r-1)*n)
    end do;
    # Peter Bala, Sep 07 2013
  • Mathematica
    Flatten[Table[CoefficientList[(1 + x + x^2 + x^3 + x^4 + x^5)^n, x], {n, 0, 25}]] (* T. D. Noe, Apr 04 2011 *)
  • PARI
    concat(vector(5,k,Vec(sum(j=0,5,x^j)^k)))  \\ M. F. Hasler, Jun 17 2012

Formula

G.f. for row n: (Sum_{j=0..5} x^j)^n.
G.f. for column k: (x^(ceiling(k/5)))*N6(k, x)/(1-x)^(k+1) with the row polynomials from the staircase array A063261(k, m) and with N6(6,x) = 5 - 10*x + 10*x^2 - 5*x^3 + x^4.
T(n, k) = 0 if n=-1 or k<0 or k >= 5*n + 1; T(0, 0)=1; T(n, k) = Sum_{j=0..5} T(n-1, k-j) else.
T(n, k) = Sum_{i = 0..floor(k/6)} (-1)^i*binomial(n,i)*binomial(n+k-1-6*i,n-1) for n >= 0 and 0 <= k <= 5*n. - Peter Bala, Sep 07 2013
T(n, k) = Sum_{i = max(0,ceiling((k-2*n)/3)).. min(n,k/3)} binomial(n,i)*trinomial(n,k-3*i) for n >= 0 and 0 <= k <= 5*n. - Matthew Monaghan, Sep 30 2015

Extensions

More terms and corrected recurrence from Nicholas M. Makin (NickDMax(AT)yahoo.com), Sep 13 2002

A018901 Central hexanomial coefficients: largest coefficient of (1 + x + ... + x^5)^n.

Original entry on oeis.org

1, 1, 6, 27, 146, 780, 4332, 24017, 135954, 767394, 4395456, 25090131, 144840476, 833196442, 4836766584, 27981391815, 163112472594, 947712321234, 5542414273884, 32312202610863, 189456975899496, 1107575676600876
Offset: 0

Views

Author

Jonn Dalton jdalton(AT)vnet.ibm.com

Keywords

Comments

Greatest multiplicity of one- or two-dimensional standard representation of Lie algebras sl(2) in decomposition of tensor power F6^k, where F6 is the standard 6-dimensional irreducible representation of sl(2). - Leonid Bedratyuk, Jul 22 2004
Sum_{k=0..floor(5*n/12)} (-1)^k*binomial(n,k)*binomial(n + floor(5*n/2) - 6*k - 1, n-1). - Warut Roonguthai, May 21 2006

Examples

			Number of ways of getting most likely sum using n 6-sided dice (e.g., for n=2, 7 is the most prevalent sum and there are 6 different ways to get it: 1+6, 2+5, 3+4, 4+3, 5+2, 6+1).
		

Crossrefs

Cf. A063419 (bisection). Row 6 of A077042.

Programs

  • Maple
    sum((-1)^(k)*binomial(n,k)*binomial(n+floor(5*n/2)-6*k-1, n-1), k=0..floor(5*n/12)); # Warut Roonguthai, May 21 2006
  • Mathematica
    Flatten[{1,Table[Coefficient[Expand[Sum[x^j,{j,0,5}]^n],x^Floor[5*n/2]],{n,1,20}]}] (* Vaclav Kotesovec, Aug 09 2013 *)

Formula

a(n) ~ 6^n * sqrt(6/(35*Pi*n)). - Vaclav Kotesovec, Aug 09 2013

A273975 Three-dimensional array written by antidiagonals in k,n: T(k,n,h) with k >= 1, n >= 0, 0 <= h <= n*(k-1) is the coefficient of x^h in the polynomial (1 + x + ... + x^(k-1))^n = ((x^k-1)/(x-1))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 6, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 1, 4, 10
Offset: 1

Views

Author

Andrey Zabolotskiy, Nov 10 2016

Keywords

Comments

Equivalently, T(k,n,h) is the number of ordered sets of n nonnegative integers < k with the sum equal to h.
From Juan Pablo Herrera P., Nov 21 2016: (Start)
T(k,n,h) is the number of possible ways of randomly selecting h cards from k-1 sets, each with n different playing cards. It is also the number of lattice paths from (0,0) to (n,h) using steps (1,0), (1,1), (1,2), ..., (1,k-1).
Shallow diagonal sums of each triangle with fixed k give the k-bonacci numbers. (End)
T(k,n,h) is the number of n-dimensional grid points of a k X k X ... X k grid, which are lying in the (n-1)-dimensional hyperplane which is at an L1 distance of h from one of the grid's corners, and normal to the corresponding main diagonal of the grid. - Eitan Y. Levine, Apr 23 2023

Examples

			For first few k and for first few n, the rows with h = 0..n*(k-1) are given:
k=1:  1;  1;  1;  1;  1; ...
k=2:  1;  1, 1;  1, 2, 1;  1, 3, 3, 1;  1, 4, 6, 4, 1; ...
k=3:  1;  1, 1, 1;  1, 2, 3, 2, 1;  1, 3, 6, 7, 6, 3, 1; ...
k=4:  1;  1, 1, 1, 1;  1, 2, 3, 4, 3, 2, 1; ...
For example, (1 + x + x^2)^3 = 1 + 3*x + 6*x^2 + 7*x^3 + 6*x^4 + 3*x^5 + x^6, hence T(3,3,2) = T(3,3,4) = 6.
From _Eitan Y. Levine_, Apr 23 2023: (Start)
Example for the repeated cumulative sum formula, for (k,n)=(3,3) (each line is the cumulative sum of the previous line, and the first line is the padded, alternating 3rd row from Pascal's triangle):
  1  0  0 -3  0  0  3  0  0 -1
  1  1  1 -2 -2 -2  1  1  1
  1  2  3  1 -1 -3 -2 -1
  1  3  6  7  6  3  1
which is T(3,3,h). (End)
		

Crossrefs

k-nomial arrays for fixed k=1..10: A000012, A007318, A027907, A008287, A035343, A063260, A063265, A171890, A213652, A213651.
Arrays for fixed n=0..6: A000012, A000012, A004737, A109439, A277949, A277950, A277951.
Central n-nomial coefficients for n=1..9, i.e., sequences with h=floor(n*(k-1)/2) and fixed n: A000012, A000984 (A001405), A002426, A005721 (A005190), A005191, A063419 (A018901), A025012, (A025013), A025014, A174061 (A025015), A201549, (A225779), A201550. Arrays: A201552, A077042, see also cfs. therein.
Triangle n=k-1: A181567. Triangle n=k: A163181.

Programs

  • Mathematica
    a = Table[CoefficientList[Sum[x^(h-1),{h,k}]^n,x],{k,10},{n,0,9}];
    Flatten@Table[a[[s-n,n+1]],{s,10},{n,0,s-1}]
    (* alternate program *)
    row[k_, n_] := Nest[Accumulate,Upsample[Table[((-1)^j)*Binomial[n,j],{j,0,n}],k],n][[;;n*(k-1)+1]] (* Eitan Y. Levine, Apr 23 2023 *)

Formula

T(k,n,h) = Sum_{i = 0..floor(h/k)} (-1)^i*binomial(n,i)*binomial(n+h-1-k*i,n-1). [Corrected by Eitan Y. Levine, Apr 23 2023]
From Eitan Y. Levine, Apr 23 2023: (Start)
(T(k,n,h))_{h=0..n*(k-1)} = f(f(...f(g(P))...)), where:
(x_i)_{i=0..m} denotes a tuple (in particular, the LHS contains the values for 0 <= h <= n*(k-1)),
f repeats n times,
f((x_i){i=0..m}) = (Sum{j=0..i} x_j)_{i=0..m} is the cumulative sum function,
g((x_i){i=0..m}) = (x(i/k) if k|i, otherwise 0)_{i=0..m*k} is adding k-1 zeros between adjacent elements,
and P=((-1)^i*binomial(n,i))_{i=0..n} is the n-th row of Pascal's triangle, with alternating signs. (End)
From Eitan Y. Levine, Jul 27 2023: (Start)
Recurrence relations, the first follows from the sequence's defining polynomial as mentioned in the Smarandache link:
T(k,n+1,h) = Sum_{i = 0..s-1} T(k,n,h-i)
T(k+1,n,h) = Sum_{i = 0..n} binomial(n,i)*T(k,n-i,h-i*k) (End)

A349933 Array read by ascending antidiagonals: the s-th column gives the central s-binomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 20, 19, 4, 1, 1, 70, 141, 44, 5, 1, 1, 252, 1107, 580, 85, 6, 1, 1, 924, 8953, 8092, 1751, 146, 7, 1, 1, 3432, 73789, 116304, 38165, 4332, 231, 8, 1, 1, 12870, 616227, 1703636, 856945, 135954, 9331, 344, 9, 1, 1, 48620, 5196627, 25288120, 19611175, 4395456, 398567, 18152, 489, 10, 1
Offset: 0

Views

Author

Stefano Spezia, Dec 06 2021

Keywords

Examples

			The array begins:
n\s |   0     1     2     3     4
----+----------------------------
  0 |   1     1     1     1     1 ...
  1 |   1     2     3     4     5 ...
  2 |   1     6    19    44    85 ...
  3 |   1    20   141   580  1751 ...
  4 |   1    70  1107  8092 38165 ...
  ...
		

Crossrefs

Cf. A000984 (s=1), A082758 (s=2), A005721 (s=3), A349936 (s=4), A063419 (s=5), A270918 (n=s), A163269 (s>0).

Programs

  • Mathematica
    T[n_,k_,s_]:=If[k==0,1,Coefficient[(Sum[x^i,{i,0,s}])^n,x^k]]; A[n_,s_]:=T[2n,s n,s]; Flatten[Table[A[n-s,s],{n,0,9},{s,0,n}]]

Formula

A(n, s) = T(2*n, s*n, s), where T(n, k, s) is the s-binomial coefficient defined as the coefficient of x^k in (Sum_{i=0..s} x^i)^n.

A349936 Central pentanomial coefficients.

Original entry on oeis.org

1, 5, 85, 1751, 38165, 856945, 19611175, 454805755, 10651488789, 251345549849, 5966636799745, 142330448514875, 3408895901222375, 81922110160246231, 1974442362935339179, 47705925773278538281, 1155170746105476171285, 28025439409568101909625, 681077893998769910221225
Offset: 0

Views

Author

Stefano Spezia, Dec 06 2021

Keywords

Comments

Largest coefficient of (Sum_{j=0..4} x^j)^(2*n).

Crossrefs

Central coefficients in triangle A035343.
Column s = 4 in A349933.

Programs

  • Mathematica
    T[n_,k_,s_]:=If[k==0,1,Coefficient[(Sum[x^i,{i,0,s}])^n,x^k]]; Table[T[2n,4n,4],{n,0,18}]

Formula

a(n) = T(2*n, 4*n, 4), where T(n, k, s) is the s-binomial coefficient defined as the coefficient of x^k in (Sum_{i=0..s} x^i)^n.
a(n) = A035343(2*n, 4*n) = [x^(4*n)] (Sum_{j=0..4} x^j)^(2*n).
From Vaclav Kotesovec, Dec 09 2021: (Start)
Recurrence: 2*n*(2*n - 1)*(3*n - 4)*(4*n - 7)*(4*n - 3)*(4*n - 1)*(6*n - 13)*(6*n - 7)*a(n) = 3*(4*n - 7)*(6*n - 13)*(10584*n^6 - 47628*n^5 + 84190*n^4 - 73965*n^3 + 33531*n^2 - 7272*n + 570)*a(n-1) - 75*(n-1)*(2*n - 3)*(4*n - 5)*(6*n - 1)*(504*n^4 - 2520*n^3 + 4160*n^2 - 2525*n + 476)*a(n-2) + 625*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(3*n - 1)*(4*n - 3)*(6*n - 7)*(6*n - 1)*a(n-3).
a(n) ~ 25^n / sqrt(8*Pi*n). (End)

A329020 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of ( Sum_{j=1..k} x_j^(2*j-1) + x_j^(-(2*j-1)) )^(2*n).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 44, 20, 0, 1, 8, 146, 580, 70, 0, 1, 10, 344, 4332, 8092, 252, 0, 1, 12, 670, 18152, 135954, 116304, 924, 0, 1, 14, 1156, 55252, 1012664, 4395456, 1703636, 3432, 0, 1, 16, 1834, 137292, 4816030, 58199208, 144840476, 25288120, 12870, 0
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2019

Keywords

Examples

			(x^3 + x + 1/x + 1/x^3)^2 = x^6 + 2*x^4 + 3*x^2 + 4 + 3/x^2 + 2/x^4 + 1/x^6. So T(1,2) = 4.
Square array begins:
   1,   1,      1,       1,        1,         1, ...
   0,   2,      4,       6,        8,        10, ...
   0,   6,     44,     146,      344,       670, ...
   0,  20,    580,    4332,    18152,     55252, ...
   0,  70,   8092,  135954,  1012664,   4816030, ...
   0, 252, 116304, 4395456, 58199208, 432457640, ...
		

Crossrefs

Columns k=0-3 give A000007, A000984, A005721, A063419.
Rows n=0-2 give A000012, A005843, 2*A143166.
Main diagonal gives A329021.
Cf. A077042.

Programs

  • Mathematica
    T[n_, 0] = Boole[n == 0]; T[n_, k_] := Sum[(-1)^j * Binomial[2*n, j] * Binomial[(2*k + 1)*n - 2*k*j - 1, (2*k - 1)*n - 2*k*j], {j, 0, Floor[(2*k - 1)*n/(2*k)]}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 06 2021 *)

Formula

T(n,k) = Sum_{j=0..floor((2*k-1)*n/(2*k))} (-1)^j * binomial(2*n,j) * binomial((2*k+1)*n-2*k*j-1,(2*k-1)*n-2*k*j) for k > 0.
Showing 1-6 of 6 results.