cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A135413 Number of at most 4-way branching ordered (i.e., plane) trees.

Original entry on oeis.org

1, 2, 6, 20, 70, 246, 875, 3144, 11385, 41470, 151778, 557712, 2056210, 7602700, 28180050, 104677280, 389571983, 1452293766, 5422187130, 20271296100, 75878518695, 284339792110, 1066585128810, 4004566131000, 15048213795600
Offset: 1

Views

Author

Andrey Bovykin (indiscernibles(AT)googlemail.com), Mar 01 2008

Keywords

Comments

Obtained by Lagrange inversion of the generating function for at most k-way branching trees.
Solve z = T/(1+T+...T^k) when k = 4. I.e., the n-th term is the coefficient of x^(n-1) in the expansion of (1+x+x^2+x^3+x^4)^n.

Crossrefs

For k=2 this is A005717, for k=3 this is A005726.

Programs

  • Maple
    A135413 := proc(n) local ogf,i ; ogf := 1 ; for i from 1 to n do ogf := taylor(ogf*(1+x+x^2+x^3+x^4),x=0,n) ; od: coeftayl(ogf,x=0,n-1) ; end: seq(A135413(n),n=1..30) ; # R. J. Mathar, Apr 21 2008
  • Mathematica
    Join[{1}, Table[Coefficient[(1 + x + x^2 + x^3 + x^4)^n, x,(n - 1)], {n,2,25}]] (* G. C. Greubel, Oct 13 2016 *)
  • Maxima
    a(n):=sum((-1)^i*binomial(n,i)*binomial(2*n-5*i-2,n-5*i-1),i,0,(n-1)/5); /* Vladimir Kruchinin, Mar 28 2019 */
    
  • PARI
    a(n) = polcoef((1+x+x^2+x^3+x^4)^n, n-1, x); \\ Michel Marcus, Mar 28 2019

Formula

a(n) = [ x^(n-1) ] (1+x+x^2+x^3+x^4)^n.
a(n) = Sum_{i=0..floor((n-1)/5)} (-1)^i * C(n,i) * C(2*n-5*i-2,n-5*i-1). - Vladimir Kruchinin, Mar 28 2019

Extensions

More terms from R. J. Mathar, Apr 21 2008
Showing 1-1 of 1 results.