cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005767 Solutions n to n^2 = a^2 + b^2 + c^2 (a,b,c > 0).

Original entry on oeis.org

3, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85
Offset: 1

Views

Author

N. J. A. Sloane, Ralph Peterson (ralphp(AT)library.nrl.navy.mil)

Keywords

Comments

All numbers not equal to some 2^k or 5*2^k [Fraser and Gordon]. - Joseph Biberstine (jrbibers(AT)indiana.edu), Jul 28 2006

References

  • T. Nagell, Introduction to Number Theory, Wiley, 1951, p. 194.

Crossrefs

Complement of A094958. Cf. A169580, A000378, A000419, A000408.
For primitive solutions see A005818.

Programs

  • Mathematica
    z=100;lst={};Do[a2=a^2;Do[b2=b^2;Do[c2=c^2;e2=a2+b2+c2;e=Sqrt[e2];If[IntegerQ[e]&&e<=z,AppendTo[lst,e]],{c,b,1,-1}],{b,a,1,-1}],{a,1,z}];Union@lst (* Vladimir Joseph Stephan Orlovsky, May 19 2010 *)
  • PARI
    is(n)=if(n%5,n,n/5)==2^valuation(n,2) \\ Charles R Greathouse IV, Mar 12 2013
    
  • Python
    def A005767(n):
        def f(x): return n+x.bit_length()+(x//5).bit_length()
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Feb 14 2025

Formula

a(n) = n + 2*log_2(n) + O(1). - Charles R Greathouse IV, Sep 01 2015
A169580(n) = a(n)^2. - R. J. Mathar, Aug 15 2023

Extensions

More terms from T. D. Noe, Mar 04 2010