cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A094958 Numbers of the form 2^k or 5*2^k.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 2048, 2560, 4096, 5120, 8192, 10240, 16384, 20480, 32768, 40960, 65536, 81920, 131072, 163840, 262144, 327680, 524288, 655360, 1048576, 1310720, 2097152
Offset: 1

Views

Author

Ralf Stephan, Jun 01 2004

Keywords

Comments

The subset {a(1),...,a(2k)} together with a(2k+2) is the set of proper divisors of 5*2^k.
For a(n)>4: number of vertices of complete graphs that can be properly edge-colored in such a way that the edges can be partitioned into edge disjoint multicolored isomorphic spanning trees.
(Editor's note: The following 3 comments are equivalent.)
From Wouter Meeussen, Apr 10 2005: This appears to be the same sequence as "Numbers n such that n^2 is not the sum of three nonzero squares". Don Reble and Paul Pollack respond: Yes, that is correct.
Also numbers k such that k^2=a^2+b^2+c^2 has no solutions in the positive integers a, b and c. - Wouter Meeussen, Apr 20 2005
The only natural numbers which cannot be the lengths of an interior diagonal of a cuboid with natural edges. - Michael Somos, Mar 02 2004

References

  • Wacław Sierpiński, Pythagorean triangles, Dover Publications, Inc., Mineola, NY, 2003, p. 101, MR2002669.

Crossrefs

Union of A000079 and A020714.
Complement of A005767.

Programs

  • Mathematica
    With[{c=2^Range[0,30]},Union[Join[c,5c]]] (* Harvey P. Dale, Jul 15 2012 *)
  • Python
    def A094958(n): return 1<>1)+1 if n&1 else 5<<((n>>1)-2) # Chai Wah Wu, Feb 14 2025

Formula

a(1)=1, a(2)=2, a(3)=4, for n>=0, a(2n+3) = 4*2^n, a(2n+4) = 5*2^n.
Recurrence: for n>4, a(n) = 2a(n-2).
G.f.: x*(1+x)*(1+x+x^2)/(1-2x^2).
Sum_{n>=1} 1/a(n) = 12/5. - Amiram Eldar, Jan 21 2022

Extensions

Edited by T. D. Noe and M. F. Hasler, Nov 12 2010

A169580 Squares of the form x^2+y^2+z^2 with x,y,z positive integers.

Original entry on oeis.org

9, 36, 49, 81, 121, 144, 169, 196, 225, 289, 324, 361, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2010

Keywords

Comments

Integer solutions of a^2 = b^2 + c^2 + d^2, i.e., Pythagorean Quadruples. - Jon Perry, Oct 06 2012
Also null (or light-like, or isotropic) vectors in Minkowski 4-space. - Jon Perry, Oct 06 2012

Examples

			9 = 1 + 4 + 4,
36 = 16 + 16 + 4,
49 = 36 + 9 + 4,
81 = 49 + 16 + 16,
so these are in the sequence.
16 cannot be written as the sum of 3 squares if zero is not allowed, therefore 16 is not in the sequence.
Also we can see that 49-36-9-4=0, so (7,6,3,2) is a null vector in the signatures (+,-,-,-) and (-,+,+,+). - _Jon Perry_, Oct 06 2012
		

References

  • T. Nagell, Introduction to Number Theory, Wiley, 1951, p. 194.

Crossrefs

For the square roots see A005767. Cf. A000378, A000419.
Cf. A217554.

Programs

  • Maple
    M:= 10000: # to get all terms <= M
    sort(convert(select(issqr, {seq(seq(seq(x^2 + y^2 + z^2,
      z=y..floor(sqrt(M-x^2-y^2))), y=x..floor(sqrt((M-x^2)/2))),
    x=1..floor(sqrt(M/3)))}),list)); # Robert Israel, Jan 28 2016
  • Mathematica
    Select[Range[60]^2, Resolve@ Exists[{x, y, z}, Reduce[# == x^2 + y^2 + z^2, {x, y, z}, Integers], And[x > 0, y > 0, z > 0]] &] (* Michael De Vlieger, Jan 27 2016 *)

A005818 Numbers n that are primitive solutions to n^2 = a^2 + b^2 + c^2 (a,b,c > 0).

Original entry on oeis.org

3, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131
Offset: 1

Views

Author

N. J. A. Sloane, RALPH PETERSON (ralphp(AT)LIBRARY.NRL.NAVY.MIL)

Keywords

Comments

These are the odd numbers excluding 1 and 5. Every term in A005767 is n*2^k for some k.

Crossrefs

Cf. A005767.

Programs

  • Mathematica
    Join[{3}, Range[7, 200, 2]] (* Paolo Xausa, Feb 14 2025 *)
  • Python
    def A005818(n): return (n<<1)+3 if n>1 else 3 # Chai Wah Wu, Feb 14 2025

Formula

G.f.: x*(-2*x^2 + x + 3)/(x - 1)^2. - Chai Wah Wu, Sep 14 2018
E.g.f.: (exp(x) - 1)*(3 + 2*x). - Stefano Spezia, Feb 19 2023

Extensions

Name corrected by T. D. Noe, Nov 12 2010

A118901 Volumes of cuboids with integer sides and main diagonal.

Original entry on oeis.org

4, 32, 36, 108, 112, 140, 144, 220, 252, 256, 288, 364, 396, 400, 500, 540, 608, 612, 644, 756, 832, 864, 896, 900, 972, 1012, 1120, 1152, 1292, 1364, 1372, 1404, 1408, 1508, 1620, 1728, 1760, 1764, 1872, 1904, 1980, 1984
Offset: 1

Views

Author

Giovanni Resta, May 05 2006

Keywords

Examples

			32 is the volume of the cuboid of sides 8,4,1 which has main diagonal = 9.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=50},Take[Union[Times@@@Select[Union[Sort/@Tuples[Range[ 2nn],3]], IntegerQ[ Sqrt[ Total[#^2] ]]&]],nn]] (* Harvey P. Dale, Jun 05 2016 *)

A118902 Surfaces of cuboids with integer sides and main diagonal.

Original entry on oeis.org

16, 64, 72, 88, 144, 168, 192, 216, 240, 256, 264, 288, 304, 336, 352, 400, 432, 480, 496, 520, 552, 576, 592, 600, 640, 648, 672, 696, 720, 760, 768, 784, 792, 840, 864, 960, 1008, 1024, 1056, 1120, 1152, 1176, 1216, 1224, 1248, 1296, 1312, 1320, 1344, 1368, 1408, 1440, 1464, 1504
Offset: 1

Views

Author

Giovanni Resta, May 05 2006

Keywords

Examples

			88 is the surface of the cuboid of sides 8,4,1 which has main diagonal = 9.
		

Crossrefs

Extensions

More terms from Robin Visser, Jan 02 2024

A166687 Numbers of the form x^2 + y^2 + 1, x, y integers.

Original entry on oeis.org

1, 2, 3, 5, 6, 9, 10, 11, 14, 17, 18, 19, 21, 26, 27, 30, 33, 35, 37, 38, 41, 42, 46, 50, 51, 53, 54, 59, 62, 65, 66, 69, 73, 74, 75, 81, 82, 83, 86, 90, 91, 98, 99, 101, 102, 105, 107, 110, 114, 117, 118, 122, 123, 126, 129, 131, 137, 138, 145, 146, 147, 149, 150, 154, 158, 161
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2010

Keywords

Comments

A001481 is the main entry for this sequence.
As Ng points out (Lemma 2.2), each prime divides some member of this sequence: 2 divides a(2) = 2, 3 divides a(3) = 3, 5 divides a(4) = 5, 7 divides a(9) = 14, etc. - Charles R Greathouse IV, Jan 04 2016

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    S:= {seq(seq(x^2+y^2+1,y=0..floor(sqrt(N-1-x^2))),x=0..floor(sqrt(N-1)))}:
    sort(convert(S,list)); # Robert Israel, Jan 05 2016
  • Mathematica
    Select[Range@ 162, Resolve[Exists[{x, y}, Reduce[# == x^2 + y^2 + 1, {x, y}, Integers]]] &] (* Michael De Vlieger, Jan 05 2016 *)
  • PARI
    is(n)=my(f=factor(n-1)); for(i=1, #f~, if(f[i,1]%4==3 && f[i,2]%2, return(0))); 1 \\ Charles R Greathouse IV, Jan 04 2016
    
  • PARI
    list(lim)=my(v=List(),t); lim\=1; for(m=0,sqrtint(lim-1), t=m^2+1; for(n=0, min(sqrtint(lim-t),m), listput(v,t+n^2))); Set(v) \\ Charles R Greathouse IV, Jan 05 2016

A341329 Numbers k such that k^2 is the sum of m nonzero squares for all 1 <= m <= k^2 - 14.

Original entry on oeis.org

13, 15, 17, 25, 26, 29, 30, 34, 35, 37, 39, 41, 45, 50, 51, 52, 53, 55, 58, 60, 61, 65, 68, 70, 73, 74, 75, 78, 82, 85, 87, 89, 90, 91, 95, 97, 100, 101, 102, 104, 105, 106, 109, 110, 111, 113, 115, 116, 117, 119, 120, 122, 123, 125, 130, 135, 136, 137
Offset: 1

Views

Author

Jianing Song, Feb 09 2021

Keywords

Comments

Numbers k such that k^2 is in A018820. Note that k^2 is never the sum of k^2 - 13 positive squares.
A square k^2 is the sum of m positive squares for all 1 <= m <= k^2 - 14 if k^2 is the sum of 2 and 3 positive squares (see A309778 and proof in Kuczma).
Intersection of A009003 and A005767. Also A009003 \ A020714.
Numbers k not of the form 5*2^e such that k has at least one prime factor congruent to 1 modulo 4.
Has density 1 over all positive integers.

Examples

			13 is a term: 169 = 13^2 = 5^2 + 12^2 = 3^2 + 4^2 + 12^2 = 11^2 + 4^2 + 4^2 + 4^2 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2 = 6^2 + 6^2 + 6^2 + 6^2 + 4^2 + 3^2 = ... = 3^2 + 2^2 + 2^2 + 1^2 + 1^2 + ... + 1^2 (sum of 155 positive squares, with 152 (1^2)'s), but 169 cannot be represented as the sum of 156 positive squares.
		

References

  • Marcin E. Kuczma, International Mathematical Olympiads, 1986-1999, The Mathematical Association of America, 2003, pages 76-79.

Crossrefs

Programs

  • PARI
    isA341329(n) = setsearch(Set(factor(n)[, 1]%4), 1) && !(n/5 == 2^valuation(n, 2))

A166265 Numbers of the form 1+x^2+y^2, x, y integers >= 1.

Original entry on oeis.org

3, 6, 9, 11, 14, 18, 19, 21, 26, 27, 30, 33, 35, 38, 41, 42, 46, 51, 53, 54, 59, 62, 66, 69, 73, 74, 75, 81, 83, 86, 90, 91, 98, 99, 101, 102, 105, 107, 110, 114, 117, 118, 123, 126, 129, 131, 137, 138, 146, 147, 149, 150, 154, 158, 161, 163, 165, 170, 171, 174, 179, 181, 182
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2010

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=40},Take[Union[Total/@Tuples[Range[nn]^2,2]+1],2*nn]] (* Harvey P. Dale, Mar 12 2015 *)

A178096 Cube of n is equal to sum of four positive distinct squares; n^3=a^2+b^2+c^2+d^2; a>b>c>d>0.

Original entry on oeis.org

5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57
Offset: 1

Views

Author

Keywords

Comments

5^3=8^2+6^2+4^2+3^2, 6^3=10^2+8^2+6^2+4^2, ...

Crossrefs

Programs

  • Mathematica
    z=100;lst={};Do[a2=a^2;Do[b2=b^2;Do[c2=c^2;Do[d2=d^2;e2=a2+b2+c2+d2;e=e2^(1/3);If[IntegerQ[e],AppendTo[lst,e]],{d,c-1,1,-1}],{c,b-1,1,-1}],{b,a-1,1,-1}],{a,1,z}];Union@lst

Formula

{n: n^3 in A004433}. - R. J. Mathar, Jun 15 2018

Extensions

Terms > 33 from R. J. Mathar, Jun 15 2018

A274255 Numbers n such that n^2 is the sum of three nonzero squares while n is not.

Original entry on oeis.org

7, 13, 15, 23, 25, 28, 31, 37, 39, 47, 52, 55, 58, 60, 63, 71, 79, 85, 87, 92, 95, 100, 103, 111, 112, 119, 124, 127, 130, 135, 143, 148, 151, 156, 159, 167, 175, 183, 188, 191, 199, 207, 208, 215, 220, 223, 231, 232, 239, 240, 247, 252, 255, 263, 271, 279, 284
Offset: 1

Views

Author

Altug Alkan, Jun 16 2016

Keywords

Examples

			7 is a term because 7 is not in A000408 and 7^2 = 49 = 2^2 + 3^2 + 6^2.
		

Crossrefs

Programs

  • PARI
    isA000408(n) = my(a, b) ; a=1 ; while(a^2+1A000408(n) && isA000408(n^2), print1(n, ", ")));
Showing 1-10 of 10 results.