cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A144396 The odd numbers greater than 1.

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133
Offset: 1

Views

Author

Paul Curtz, Oct 03 2008

Keywords

Comments

Last number of the n-th row of the triangle described in A142717.
If negated, these are also the values at local minima of the sequence A141620.
a(n) is the shortest leg of the n-th Pythagorean triple with consecutive longer leg and hypotenuse. The n-th such triple is given by (2n+1,2n^2+2n, 2n^2+2n+1), so that the longer legs are A046092(n) and the hypotenuses are A099776(n). - Ant King, Feb 10 2011
Numbers k such that the symmetric representation of sigma(k) has a pair of bars as its ends (cf. A237593). - Omar E. Pol, Sep 28 2018
Numbers k such that there is a prime knot with k crossings and braid index 2. (IS this true with "prime" removed?) - Charles R Greathouse IV, Feb 14 2023

Crossrefs

Complement of A004275 and of A004277.
Essentially the same as A140139, A130773, A062545, A020735, A005818.

Programs

Formula

a(n) = A005408(n+1) = A000290(n+1) - A000290(n).
G.f.: x*(3-x)/(1-x)^2. - Jaume Oliver Lafont, Aug 30 2009
a(n) = A254858(n-1,2). - Reinhard Zumkeller, Feb 09 2015

Extensions

Edited by R. J. Mathar, May 21 2009

A096910 Primitive Pythagorean Quadruples a^2+b^2+c^2=d^2, 0

Original entry on oeis.org

3, 7, 9, 9, 11, 11, 13, 15, 15, 17, 17, 19, 19, 19, 21, 21, 21, 21, 23, 23, 23, 25, 25, 27, 27, 27, 27, 27, 29, 29, 29, 31, 31, 31, 31, 33, 33, 33, 33, 33, 33, 33, 35, 35, 35, 35, 37, 37, 37, 37, 39, 39, 39, 39, 39, 39, 41, 41, 41, 41, 41, 43, 43, 43, 43, 43, 43, 45, 45, 45
Offset: 1

Views

Author

Ray Chandler, Aug 15 2004

Keywords

Comments

Sequence with repetitions removed is A005818. - Ivan Neretin, May 24 2015

Crossrefs

Cf. A096907, A096908, A096909 (other components of the quadruple), A046086, A046087, A020882 (Pythagorean triples ordered in a similar way).

Programs

  • Mathematica
    mx = 50; res = {}; Do[If[GCD[b, c, d] > 1, Continue[]]; If[IntegerQ[a = Sqrt[d^2 - b^2 - c^2]] && a > 0 && a <= b, AppendTo[res, {a, b, c, d}]], {d, mx}, {c, d}, {b, c}]; res[[All, 4]] (* Ivan Neretin, May 24 2015 *)

A005767 Solutions n to n^2 = a^2 + b^2 + c^2 (a,b,c > 0).

Original entry on oeis.org

3, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85
Offset: 1

Views

Author

N. J. A. Sloane, Ralph Peterson (ralphp(AT)library.nrl.navy.mil)

Keywords

Comments

All numbers not equal to some 2^k or 5*2^k [Fraser and Gordon]. - Joseph Biberstine (jrbibers(AT)indiana.edu), Jul 28 2006

References

  • T. Nagell, Introduction to Number Theory, Wiley, 1951, p. 194.

Crossrefs

Complement of A094958. Cf. A169580, A000378, A000419, A000408.
For primitive solutions see A005818.

Programs

  • Mathematica
    z=100;lst={};Do[a2=a^2;Do[b2=b^2;Do[c2=c^2;e2=a2+b2+c2;e=Sqrt[e2];If[IntegerQ[e]&&e<=z,AppendTo[lst,e]],{c,b,1,-1}],{b,a,1,-1}],{a,1,z}];Union@lst (* Vladimir Joseph Stephan Orlovsky, May 19 2010 *)
  • PARI
    is(n)=if(n%5,n,n/5)==2^valuation(n,2) \\ Charles R Greathouse IV, Mar 12 2013
    
  • Python
    def A005767(n):
        def f(x): return n+x.bit_length()+(x//5).bit_length()
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Feb 14 2025

Formula

a(n) = n + 2*log_2(n) + O(1). - Charles R Greathouse IV, Sep 01 2015
A169580(n) = a(n)^2. - R. J. Mathar, Aug 15 2023

Extensions

More terms from T. D. Noe, Mar 04 2010

A020742 Pisot sequence T(7,9).

Original entry on oeis.org

7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A005408, A020735. See A008776 for definitions of Pisot sequences.
Essentially the same as A005818.

Programs

  • Mathematica
    T[x_, y_, z_] := Block[{a}, a[0] = x; a[1] = y; a[n_] := a[n] = Floor[a[n - 1]^2/a[n - 2]]; Table[a[n], {n, 0, z}]]; T[7, 9, 66] (* Michael De Vlieger, Aug 08 2016 *)
  • PARI
    pisotT(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]));
      a
    }
    pisotT(50, 7, 9) \\ Colin Barker, Aug 08 2016

Formula

a(n) = 2*n + 7.
a(n) = 2*a(n-1) - a(n-2).
From Elmo R. Oliveira, Oct 30 2024: (Start)
G.f.: (7 - 5*x)/(1 - x)^2.
E.g.f.: (7 + 2*x)*exp(x).
a(n) = A016825(n+3)/2 = A028560(n+1) - A028560(n). (End)

A100319 Even numbers m such that at least one of m-1 and m+1 is composite.

Original entry on oeis.org

8, 10, 14, 16, 20, 22, 24, 26, 28, 32, 34, 36, 38, 40, 44, 46, 48, 50, 52, 54, 56, 58, 62, 64, 66, 68, 70, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 104, 106, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 140, 142, 144, 146, 148
Offset: 1

Views

Author

Rick L. Shepherd, Nov 13 2004

Keywords

Comments

Subsequence of A100318. For each k >= 0, a(k+1) = a(k) + 2 unless a(k) + 1 and a(k) + 3 are twin primes, in which case a(k+1) = a(k) + 4 (as a(k) - 1 and a(k) + 5 are divisible by 3).
The even nonisolated primes(n+1). - Juri-Stepan Gerasimov, Nov 09 2009

Crossrefs

Cf. A100318 (supersequence containing odd and even n), A045718 (n such that at least one of n-1 and n+1 is prime).
Cf. A167692(the even nonisolated nonprimes). - Juri-Stepan Gerasimov, Nov 09 2009
Complement of A014574 (average of twin prime pairs) w.r.t. A005843 (even numbers), except for missing term 2.

Programs

  • Mathematica
    Select[2*Range[100], CompositeQ[#-1] || CompositeQ[#+1] &]  (* G. C. Greubel, Mar 09 2019 *)
  • PARI
    forstep(n=4,300,2,if(isprime(n-1)+isprime(n+1)<=1,print1(n,",")))
    
  • Sage
    [n for n in (3..250) if mod(n,2)==0 and (is_prime(n-1) + is_prime(n+1)) < 2] # G. C. Greubel, Mar 09 2019

Formula

a(n) = A167692(n+1). - Juri-Stepan Gerasimov, Nov 09 2009
Showing 1-5 of 5 results.