cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005769 Number of convex polygons of length 2n on square lattice whose leftmost bottom vertex is strictly to the right of the rightmost top vertex.

Original entry on oeis.org

1, 13, 110, 758, 4617, 25895, 136949, 693369, 3395324, 16197548, 75675657, 347624505, 1574756959, 7051383905, 31266981002, 137492793602, 600295660953, 2604690331787, 11240698270037, 48279130088017, 206486210282936, 879807455701208, 3736101981855305
Offset: 6

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    DeleteCases[CoefficientList[Series[x^4*(2 - 20 x + 75 x^2 - 127 x^3 + 95 x^4 - 27 x^5 + 4 x^6)/((1 - 2 x^(1/2))^2*(1 + 2 x^(1/2))^2*(1 - 2 x) (1 + x^(1/2) - x)^2*(1 - x^(1/2) - x)^2) - 2 x^4*(1 - 4 x)^(-3/2), {x, 0, 27}], x] , 0] (* Michael De Vlieger, Aug 26 2016 *)

Formula

a(n) = A005436(n) - A005768(n) - A005770(n).
G.f.: x^4 * (2 - 20*x + 75*x^2 - 127*x^3 + 95*x^4 - 27*x^5 + 4*x^6) / ((1 - 2*x^(1/2))^2 * (1 + 2*x^(1/2))^2 * (1 - 2*x) * (1 + x^(1/2) - x)^2 * (1 - x^(1/2) - x)^2) - 2*x^4 * (1 - 4*x)^(-3/2). - Markus Voege (voege(AT)blagny.inria.fr), Nov 28 2003

Extensions

Better description from Markus Voege (voege(AT)blagny.inria.fr), Nov 28 2003
More terms from Sean A. Irvine, Aug 26 2016