cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A045828 One fourth of theta series of cubic lattice with respect to face.

Original entry on oeis.org

1, 2, 2, 4, 3, 2, 6, 4, 4, 6, 4, 4, 7, 8, 2, 8, 8, 4, 10, 4, 4, 10, 10, 8, 9, 4, 6, 12, 8, 6, 10, 12, 4, 14, 8, 4, 16, 10, 8, 8, 9, 10, 12, 12, 8, 12, 12, 4, 20, 10, 6, 20, 8, 6, 10, 12, 8, 20, 18, 8, 11, 12, 12, 16, 8, 6, 20, 16, 12, 14, 8, 12, 20, 14, 6, 12, 20, 8, 26, 12, 8, 22, 8, 12, 15
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of solutions to n = t1 + t2 + 2*t3 where t1, t2, t3 are triangular numbers. - Michael Somos, Jan 02 2006
The cubic lattice is the set of triples [a, b, c] where the entries are all integers. A face is centered at a triple where one entry is an integer and the other two are one half an odd integer. - Michael Somos, Jun 29 2012

Examples

			G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 3*x^4 + 2*x^5 + 6*x^6 + 4*x^7 + 4*x^8 + 6*x^9 + ...
G.f. = q + 2*q^3 + 2*q^5 + 4*q^7 + 3*q^9 + 2*q^11 + 6*q^13 + 4*q^15 + 4*q^17 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 107.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 1/4 EllipticTheta[ 3, 0, x] EllipticTheta[ 2, 0, x]^2, {x, 0, n + 1/2}]; (* Michael Somos, Jun 29 2012 *)
    a[ n_] := SeriesCoefficient[ 1/8 EllipticTheta[ 2, 0, x^2] EllipticTheta[ 2, 0, x]^2, {x, 0, 2 n + 1}]; (* Michael Somos, Jun 29 2012 *)
    QP = QPochhammer; s = (QP[q^2]^3*QP[q^4]^2)/QP[q]^2 + O[q]^90; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A)^2 / eta(x + A)^2, n))}; /* Michael Somos, Oct 25 2006 */

Formula

Expansion of q^(-1/2) * (eta(q^2)^3 * eta(q^4)^2) / eta(q)^2 in powers of q. - Michael Somos, Jan 02 2006
Expansion of phi(x) * psi(x^2)^2 = psi(x)^2 * psi(x^2) = psi(x)^4 / phi(x) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jun 29 2012
Euler transform of period 4 sequence [2, -1, 2, -3, ...]. - Michael Somos, Mar 05 2003
Convolution of A033761 and A010054. - Michael Somos, Jun 29 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = (1/2)^(1/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A212885. - Michael Somos, Sep 08 2018

Extensions

Edited by Michael Somos, Mar 05 2003

A259825 a(n) = 12*H(n) where H() is the Hurwitz class number.

Original entry on oeis.org

-1, 0, 0, 4, 6, 0, 0, 12, 12, 0, 0, 12, 16, 0, 0, 24, 18, 0, 0, 12, 24, 0, 0, 36, 24, 0, 0, 16, 24, 0, 0, 36, 36, 0, 0, 24, 30, 0, 0, 48, 24, 0, 0, 12, 48, 0, 0, 60, 40, 0, 0, 24, 24, 0, 0, 48, 48, 0, 0, 36, 48, 0, 0, 60, 42, 0, 0, 12, 48, 0, 0, 84, 36, 0, 0
Offset: 0

Views

Author

Michael Somos, Jul 05 2015

Keywords

Comments

Coefficients of q-expansion of Eisenstein series G_{3/2}(tau) multiplied by 12. - N. J. A. Sloane, Mar 16 2019

Examples

			G.f. = -1 + 4*x^3 + 6*x^4 + 12*x^7 + 12*x^8 + 12*x^11 + 16*x^12 + 24*x^15 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 100; gf[m_] := With[{r = Range[-m, m]}, -2 Sum[(-1)^k*x^(k^2 + k)/(1 + (-x)^k)^2, {k, r}]/EllipticTheta[3, 0, x] - 2 Sum[(-1)^k*x^(k^2 + 2 k)/(1 + x^(2 k))^2, {k, r}]/EllipticTheta[3, 0, -x]]; gf[terms // Sqrt // Ceiling] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Apr 02 2017 *)
    a[ n_] := If[ n<1, -Boole[n==0], With[{m = Floor[(-1 + Sqrt[1 + 4*n])/2]}, -2*SeriesCoefficient[ Sum[(-1)^k*x^(k^2 + k)/(1 + (-x)^k)^2, {k, -m-1,m}] / EllipticTheta[3, 0, x] + Sum[(-1)^k*x^(k^2 + 2*k)/(1 + x^(2*k))^2, {k, -m-2,m}]/ EllipticTheta[3, 0, -x], {x, 0, n}]]]; (* Michael Somos, Feb 04 2022 *)
  • PARI
    {a(n) = 12 * qfbhclassno(n)};
    
  • PARI
    {a(n) = my(D, f); 12 * if( n<1, (n==0)/-12, [D, f] = core(-n, 1); if( D%4>1 && !(f%2), D*=4; f/=2); if( D%4<2, qfbclassno(D) / max(1, D+6), 0) * sumdiv(f, d, moebius(d) * kronecker(D, d) * sigma(f/d)))};

Formula

a(n) = 12 * A058305(n) / A058306(n). a(4*n + 1) = a(4*n + 2) = 0. a(3*n + 4) = 6 * A259827(n).
a(4*n + 3) = 4 * A130695(n). a(8*n + 3) = A005886(n) = 2 * A005869(n) = 4 * A008443(n). a(12*n + 7) = 12 * A259655(n).
a(16*n + 4) = 6 * A045834(n) = 3 * A005876(n). a(16*n + 8) = 12 * A045828(n) = 6 * A005884(n) = 3 * A005877(n).
a(24*n + 3) = 4 * A213627(n). a(24*n + 7) = 12 * A185220(n). a(24*n + 11) = 12 * A213617(n). a(24*n + 19) = 12 * A181648(n). a(24*n + 23) = 12 * A188569(n+1).
a(32*n + 4) = 6 * A213022(n). a(32*n + 8) = 12 * A213625(n). a(32*n + 12) = 16 * A008443(n) = 8 * A005869(n) = 4 * A005886(n) = 2 * A005878(n). a(32*n + 20) = 24 * A045831(n) = 6 * A004024(n). a(32*n + 24) = 24 * A213624(n).
G.f.: -2 * (Sum_{k in Z} (-1)^k * x^(k*k + k) / (1 + (-x)^k)^2) / (Sum_{k in Z} x^k^2) - 2 * (Sum_{k in Z} (-1)^k * x^(k^2 + 2*k) / (1 + x^(2*k))^2) / (Sum_{k in Z} (-x)^k^2).
a(n) >= 0 if n > 0. - Michael Somos, Feb 04 2022

A117728 A117726(n)/2.

Original entry on oeis.org

1, 2, 2, 2, 4, 4, 2, 4, 5, 4, 6, 4, 4, 8, 4, 4, 8, 6, 6, 8, 8, 4, 6, 8, 5, 12, 8, 4, 12, 8, 6, 8, 8, 8, 12, 10, 4, 12, 8, 8, 16, 8, 6, 12, 12, 8, 10, 8, 9, 14, 12, 8, 12, 16, 8, 16, 8, 4, 18, 8, 12, 16, 10, 8, 16, 16, 6, 16, 16, 8, 14, 12, 8, 20, 14, 12, 16, 8, 10, 16, 17, 8, 18, 16, 8, 20, 12
Offset: 1

Views

Author

N. J. A. Sloane, Apr 14 2006

Keywords

Examples

			G.f. = x + 2*x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 4*x^6 + 2*x^7 + 4*x^8 + 5*x^9 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( sum(k=1, sqrtint(4*n + 9)\2, x^(k^2 + k - 2) / (1 - x^(2*k - 1))^2, A) / sum(k=1, sqrtint(4*n + 1)\2 + 1, x^(k^2 - k), A), n))}; /* Michael Somos, Jul 05 2015 */

Formula

a(4*n) = 2 * a(n). a(4*n + 1) = A045834(n). a(4*n + 2) = A005884(n). - Michael Somos, Jul 05 2015
G.f.: (Sum_{k>0} x^(k^2 + k - 1) / (1 - x^(2*k - 1))^2) / (Sum_{k>0} x^(k*(k - 1))). - Michael Somos, Jul 05 2015
Showing 1-3 of 3 results.