cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A321440 Number of partitions of n into consecutive parts, all singletons except the largest.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 5, 4, 5, 7, 5, 6, 8, 5, 8, 10, 5, 8, 10, 7, 10, 11, 7, 8, 13, 9, 9, 14, 7, 12, 15, 6, 12, 13, 11, 15, 14, 8, 10, 19, 10, 12, 18, 8, 16, 19, 9, 12, 17, 14, 16, 16, 10, 15, 21, 15, 14, 20, 7, 16, 25, 7, 20, 21, 14, 18, 18, 14, 12, 26, 16, 17
Offset: 0

Views

Author

Allan C. Wechsler, Nov 09 2018

Keywords

Comments

Number of representations of n as the difference of two distinct triangular numbers, plus any multiple of the order of the larger triangular number.
From Jeremy Lovejoy, Nov 10 2022: (Start)
For n > 0, a(n) is also equal to the Hurwitz class number H(8n-1).
a(n) is also equal to the number of partitions y of n having no repeated even parts and smallest part odd, counted according to the weight w(y) = (-1)^(the number of even parts)*(the number of occurrences of the smallest part). For example, the partitions of 6 having no repeated even parts and smallest part odd are [5,1], [4,1,1], [3,3], [3,2,1], [3,1,1,1], [2,1,1,1,1], and [1,1,1,1,1,1], which are counted with weights 1,-2,2,-1,3,-4, and 6, giving a(6) = 1-2+2-1+3-4+6 = 5. (End)

Examples

			Here are the derivations of the terms given. Partitions are listed as strings of digits.
n = 0: (empty partition)
n = 1: 1
n = 2: 11, 2
n = 3: 111, 12, 3
n = 4: 1111, 22, 4
n = 5: 11111, 122, 23, 5
n = 6: 111111, 123, 222, 33, 6
n = 7: 1111111, 1222, 34, 7
n = 8: 11111111, 2222, 233, 44, 8
n = 9: 111111111, 12222, 1233, 234, 333, 45, 9
n = 10: 1111111111, 1234, 22222, 55, (10)
		

Crossrefs

See comment by Emeric Deutsch at A001227 (partitions into consecutive parts, all singletons); the partitions considered in the present sequence are a superset of those described by Deutsch.

Programs

  • Python
    from sympy.utilities.iterables import partitions
    def A321440(n):
        return 1 if n == 0 else sum(1 for s,p in partitions(n,size=True) if len(p)-1 == max(p)-min(p) == s-p[max(p)]) # Chai Wah Wu, Nov 09 2018
    
  • Python
    from _future_ import division
    def A321440(n): # a faster program based on the characterization in the comments
        if n == 0:
            return 1
        c = 0
        for i in range(n):
            mi = i*(i+1)//2 + n
            for j in range(i+1,n+1):
                k = mi - j*(j+1)//2
                if k < 0:
                    break
                if not k % j:
                    c += 1
        return c # Chai Wah Wu, Nov 09 2018

Formula

From Jeremy Lovejoy, Nov 10 2022: (Start)
G.f.: 1 + Sum_{n>=0} x^(n+1)*Product_{k=1..n} (1-x^(2*k))/Product_{k=1..n+1} (1-x^(2*k-1)).
G.f.: 1 + Sum_{n>=1} (-1)^(n+1)*x^(n^2)/((1-x^(2*n-1))*Product_{k=1..n} (1-x^(2*k-1))). (End)

Extensions

More terms from Chai Wah Wu, Nov 09 2018

A117003 a(n) = sigma(n) + A079667(n).

Original entry on oeis.org

1, 4, 6, 10, 10, 18, 14, 24, 21, 30, 22, 44, 26, 42, 40, 52, 34, 66, 38, 70, 56, 66, 46, 100, 55, 78, 72, 98, 58, 122, 62, 112, 88, 102, 84, 156, 74, 114, 104, 156, 82, 168, 86, 154, 138, 138, 94, 216, 105, 170, 136, 182, 106, 216, 132, 212, 152, 174, 118, 294, 122, 186, 186
Offset: 1

Views

Author

N. J. A. Sloane, Apr 15 2006

Keywords

References

  • H. J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see p. 322.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Max[#, n/#] &]; Array[a, 100] (* Amiram Eldar, Jan 12 2025 *)
  • PARI
    {a(n) = sumdiv(n, d, max(d, n/d))} \\ Seiichi Manyama, Dec 27 2017

Formula

a(n) = Sum_{d|n} max(d, n/d). - Seiichi Manyama, Dec 27 2017
a(n) = Sum_{k in Z} H(4*n-k^2) where H() is the Hurwitz class number. - Seiichi Manyama, Jan 06 2018
G.f.: Sum_{n >= 1} x^(n^2)*(n + 2*x^n - n*x^(2*n))/(1 - x^n)^2 = x + 4*x^2 + 6*x^3 + 10*x^4 + 10*x^5 + .... Cf. A117004. - Peter Bala, Jan 19 2021
Sum_{k=1..n} a(k) ~ zeta(2) * n^2. - Amiram Eldar, Jan 12 2025

A297793 a(n) = Sum_{d|n} min(d, n/d)^3.

Original entry on oeis.org

1, 2, 2, 10, 2, 18, 2, 18, 29, 18, 2, 72, 2, 18, 56, 82, 2, 72, 2, 146, 56, 18, 2, 200, 127, 18, 56, 146, 2, 322, 2, 146, 56, 18, 252, 416, 2, 18, 56, 396, 2, 504, 2, 146, 306, 18, 2, 632, 345, 268, 56, 146, 2, 504, 252, 832, 56, 18, 2, 882, 2, 18, 742, 658, 252
Offset: 1

Views

Author

Seiichi Manyama, Jan 06 2018

Keywords

Crossrefs

Sum_{d|n} min(d, n/d)^k: A117004 (k=1), A297792 (k=2), this sequence (k=3), A297794 (k=4), A297795 (k=5).
Cf. A259825.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Min[#, n/#]^3 &]; Array[a, 65] (* Amiram Eldar, Oct 04 2023*)
  • PARI
    {a(n) = sumdiv(n, d, min(d, n/d)^3)}

Formula

a(n) = - Sum_{k in Z} (k^2-n)*H(4*n-k^2) where H() is the Hurwitz class number.

A297795 a(n) = Sum_{d|n} min(d, n/d)^5.

Original entry on oeis.org

1, 2, 2, 34, 2, 66, 2, 66, 245, 66, 2, 552, 2, 66, 488, 1090, 2, 552, 2, 2114, 488, 66, 2, 2600, 3127, 66, 488, 2114, 2, 6802, 2, 2114, 488, 66, 6252, 10376, 2, 66, 488, 8364, 2, 16104, 2, 2114, 6738, 66, 2, 18152, 16809, 6316, 488, 2114, 2, 16104, 6252, 35728, 488
Offset: 1

Views

Author

Seiichi Manyama, Jan 06 2018

Keywords

Crossrefs

Sum_{d|n} min(d, n/d)^k: A117004 (k=1), A297792 (k=2), A297793 (k=3), A297794 (k=4), this sequence (k=5).
Cf. A259825.

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors@n}, Plus @@ (Min[#, n/#]^5 & /@ d)]; Array[f, 57] (* Robert G. Wilson v, Jan 06 2018 *)
  • PARI
    {a(n) = sumdiv(n, d, min(d, n/d)^5)}

Formula

a(n) = - Sum_{k in Z} (k^4-3*n*k^2+n^2)*H(4*n-k^2) where H() is the Hurwitz class number.

A297491 a(n) = (1/2) * Sum_{|k|<=2*sqrt(p)} k^4*H(4*p-k^2) where H() is the Hurwitz class number and p is n-th prime.

Original entry on oeis.org

9, 44, 234, 664, 2628, 4354, 9774, 13660, 24264, 48690, 59488, 101194, 137718, 158884, 207504, 297594, 410580, 453778, 601324, 715608, 777814, 985840, 1143324, 1409670, 1825054, 2060298, 2185144, 2449764, 2589730, 2885454, 4096384, 4495788, 5142294
Offset: 1

Views

Author

Seiichi Manyama, Dec 31 2017

Keywords

Crossrefs

(1/2) * Sum_{|k|<=2*sqrt(p)} k^m*H(4*p-k^2): A000040 (m=0), A084920 (m=2), this sequence (m=4), A297492 (m=6), A297493 (m=8), A297494 (m=10).
Cf. A259825.

Formula

Let b(n) = 2*n^3 - 3*n - 1.
a(n) = b(prime(n)).

A297492 a(n) = (1/2) * Sum_{|k|<=2*sqrt(p)} k^6*H(4*p-k^2) where H() is the Hurwitz class number and p is the n-th prime.

Original entry on oeis.org

33, 308, 2874, 11528, 72060, 141218, 414918, 648260, 1394328, 3528690, 4608800, 9358298, 14113470, 17077148, 24378288, 39426858, 60555180, 69195410, 100714868, 127012680, 141942878, 194693840, 237229188, 313639470, 442561238, 520209690, 562658408, 655294428
Offset: 1

Views

Author

Seiichi Manyama, Dec 31 2017

Keywords

Crossrefs

(1/2) * Sum_{|k|<=2*sqrt(p)} k^m*H(4*p-k^2): A000040 (m=0), A084920 (m=2), A297491 (m=4), this sequence (m=6), A297493 (m=8), A297494 (m=10).
Cf. A259825.

Programs

  • PARI
    b(n) = 5*n^4 - 9*n^2 - 5*n - 1;
    a(n) = b(prime(n)); \\ Michel Marcus, Jan 01 2018

Formula

Let b(n) = 5*n^4 - 9*n^2 - 5*n - 1.
a(n) = b(prime(n)).

A297493 a(n) = (1/2) * Sum_{|k|<=2*sqrt(p)} k^8*H(4*p-k^2) where H() is the Hurwitz class number and p is n-th prime.

Original entry on oeis.org

129, 2444, 39714, 224664, 2214948, 5133114, 19734534, 34465980, 89757384, 286456170, 399954528, 969369474, 1620023118, 2055854724, 3207878544, 5850511794, 10003119540, 11817917898, 18893239884, 25249088088, 29012002734, 43064859120, 55130420604
Offset: 1

Views

Author

Seiichi Manyama, Dec 31 2017

Keywords

Crossrefs

(1/2) * Sum_{|k|<=2*sqrt(p)} k^m*H(4*p-k^2): A000040 (m=0), A084920 (m=2), A297491 (m=4), A297492 (m=6), this sequence (m=8), A297494 (m=10).
Cf. A259825.

Programs

  • PARI
    lista(nn) = forprime(p=2, nn, print1(14*p^5-28*p^3-20*p^2-7*p-1, ", ")); \\ Altug Alkan, Jan 01 2018

Formula

Let b(n) = 14*n^5 - 28*n^3 - 20*n^2 - 7*n - 1.
a(n) = b(prime(n)).

A297494 a(n) = (1/2) * Sum_{|k|<=2*sqrt(p)} k^10*H(4*p-k^2) where H() is the Hurwitz class number and p is n-th prime.

Original entry on oeis.org

513, 20708, 584874, 4714408, 72449100, 200562418, 1012788198, 1953009460, 6172747128, 24788658690, 37242612640, 107770200778, 198936710910, 265200653548, 449592659568, 931777815258, 1775665528380, 2155635964450, 3812897562148, 5368106367720, 6351988507678
Offset: 1

Views

Author

Seiichi Manyama, Dec 31 2017

Keywords

Crossrefs

(1/2) * Sum_{|k|<=2*sqrt(p)} k^m*H(4*p-k^2): A000040 (m=0), A084920 (m=2), A297491 (m=4), A297492 (m=6), A297493 (m=8), this sequence (m=10).

Formula

Let b(n) = 42*n^6 - 90*n^4 - 75*n^3 - 35*n^2 - 9*n - 1.
a(n) = b(prime(n)) - tau(prime(n)) where tau(n)=A000594(n) is Ramanujan's tau function.
So tau(prime(n)) + 1 == -a(n) (mod prime(n)).

A306934 Coefficients of q-expansion of Eisenstein series G_{5/2}(tau) multiplied by 120.

Original entry on oeis.org

1, -10, 0, 0, -70, -48, 0, 0, -120, -250, 0, 0, -240, -240, 0, 0, -550, -480, 0, 0, -528, -480, 0, 0, -720, -1210, 0, 0, -960, -720, 0, 0, -1080, -1440, 0, 0, -1750, -1200, 0, 0, -1680, -1920, 0, 0, -1680, -1488, 0, 0, -2160, -3370, 0, 0, -2640, -1680, 0, 0, -2400, -3360, 0, 0, -2880, -2640
Offset: 0

Views

Author

N. J. A. Sloane, Mar 16 2019

Keywords

Crossrefs

Programs

  • Sage
    def a(n):
        if n==0: return 1
        if (n%4) not in [0,1]: return 0
        D = Integer(n).squarefree_part()
        f = Integer(sqrt(n/D))
        if (D%4) not in [0,1]: D, f = 4*D, f//2
        X = kronecker_character(D)
        s = sum([moebius(d)*X(d)*d*sigma(f/d, 3) for d in f.divisors()])
        return round((120*X.lfunction(100)(-1)*s).real()) # Robin Visser, Feb 24 2024

Extensions

Corrected and more terms from Robin Visser, Feb 24 2024

A306937 Coefficients of q-expansion of Eisenstein series G_{11/2}(tau) multiplied by 132.

Original entry on oeis.org

-1, 0, 0, 44, 330, 0, 0, 4224, 7524, 0, 0, 30600, 23276, 0, 0, 130944
Offset: 0

Views

Author

N. J. A. Sloane, Mar 16 2019

Keywords

Crossrefs

Showing 1-10 of 18 results. Next