cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A297792 a(n) = Sum_{d|n} min(d, n/d)^2.

Original entry on oeis.org

1, 2, 2, 6, 2, 10, 2, 10, 11, 10, 2, 28, 2, 10, 20, 26, 2, 28, 2, 42, 20, 10, 2, 60, 27, 10, 20, 42, 2, 78, 2, 42, 20, 10, 52, 96, 2, 10, 20, 92, 2, 100, 2, 42, 70, 10, 2, 132, 51, 60, 20, 42, 2, 100, 52, 140, 20, 10, 2, 182, 2, 10, 118, 106, 52, 100, 2, 42, 20
Offset: 1

Views

Author

Seiichi Manyama, Jan 06 2018

Keywords

Crossrefs

Sum_{d|n} min(d, n/d)^k: A117004 (k=1), this sequence (k=2), A297793 (k=3), A297794 (k=4), A297795 (k=5).

Programs

  • Mathematica
    a[n_] := Block[{d = Divisors@n}, Plus @@ (Min[#, n/#]^2 & /@ d)]; Array[a, 70] (* Robert G. Wilson v, Jan 06 2018 *)
  • PARI
    {a(n) = sumdiv(n, d, min(d, n/d)^2)}

Formula

From Michel Marcus, Jan 09 2018: (Start)
a(p) = 2, for prime p.
a(2p) = 10, for odd prime p. (End)
a(r*p) = 2 + 2*r^2, where r, p are primes and p > r. - Bruno Berselli, Jan 09 2018

A297793 a(n) = Sum_{d|n} min(d, n/d)^3.

Original entry on oeis.org

1, 2, 2, 10, 2, 18, 2, 18, 29, 18, 2, 72, 2, 18, 56, 82, 2, 72, 2, 146, 56, 18, 2, 200, 127, 18, 56, 146, 2, 322, 2, 146, 56, 18, 252, 416, 2, 18, 56, 396, 2, 504, 2, 146, 306, 18, 2, 632, 345, 268, 56, 146, 2, 504, 252, 832, 56, 18, 2, 882, 2, 18, 742, 658, 252
Offset: 1

Views

Author

Seiichi Manyama, Jan 06 2018

Keywords

Crossrefs

Sum_{d|n} min(d, n/d)^k: A117004 (k=1), A297792 (k=2), this sequence (k=3), A297794 (k=4), A297795 (k=5).
Cf. A259825.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Min[#, n/#]^3 &]; Array[a, 65] (* Amiram Eldar, Oct 04 2023*)
  • PARI
    {a(n) = sumdiv(n, d, min(d, n/d)^3)}

Formula

a(n) = - Sum_{k in Z} (k^2-n)*H(4*n-k^2) where H() is the Hurwitz class number.

A297794 a(n) = Sum_{d|n} min(d, n/d)^4.

Original entry on oeis.org

1, 2, 2, 18, 2, 34, 2, 34, 83, 34, 2, 196, 2, 34, 164, 290, 2, 196, 2, 546, 164, 34, 2, 708, 627, 34, 164, 546, 2, 1446, 2, 546, 164, 34, 1252, 2004, 2, 34, 164, 1796, 2, 2788, 2, 546, 1414, 34, 2, 3300, 2403, 1284, 164, 546, 2, 2788, 1252, 5348, 164, 34, 2, 4550, 2
Offset: 1

Views

Author

Seiichi Manyama, Jan 06 2018

Keywords

Crossrefs

Sum_{d|n} min(d, n/d)^k: A117004 (k=1), A297792 (k=2), A297793 (k=3), this sequence (k=4), A297795 (k=5).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Min[#, n/#]^4 &]; Array[a, 60] (* Amiram Eldar, Oct 04 2023 *)
  • PARI
    {a(n) = sumdiv(n, d, min(d, n/d)^4)}

A297844 a(n) = Sum_{d|n} max(d, n/d)^5.

Original entry on oeis.org

1, 64, 486, 2080, 6250, 16038, 33614, 67584, 118341, 206250, 322102, 515264, 742586, 1109262, 1525000, 2163712, 2839714, 3912786, 4952198, 6606250, 8201816, 10629366, 12872686, 16504000, 19534375, 24505338, 28815912, 35529998, 41022298, 50334302
Offset: 1

Views

Author

Seiichi Manyama, Jan 07 2018

Keywords

Comments

If p is a prime, then 2*p^5 belongs to this sequence. Conjecture: The converse is true. - Alexandra Hercilia Pereira Silva, Oct 04 2022

Crossrefs

Sum_{d|n} max(d, n/d)^k: A117003 (k=1), A297841 (k=2), A297842 (k=3), A297843 (k=4), this sequence (k=5).

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors@ n}, Plus @@ (Max[#, n/#]^5 & /@ d)]; Array[f, 32] (* Robert G. Wilson v, Jan 07 2018 *)
  • PARI
    {a(n) = sumdiv(n, d, max(d, n/d)^5)}

Formula

a(n) + A297795(n) = 2*A001160(n).
Sum_{k=1..n} a(k) ~ (zeta(6)/3) * n^6. - Amiram Eldar, Jan 12 2025
Showing 1-4 of 4 results.