cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A005922 a(1)=1; a(n) = n!*Fibonacci(n+2), n > 1.

Original entry on oeis.org

1, 6, 30, 192, 1560, 15120, 171360, 2217600, 32296320, 522547200, 9300614400, 180583603200, 3798482688000, 86044973414400, 2088355965696000, 54064489070592000, 1487129136869376000, 43312058119249920000
Offset: 1

Views

Author

Keywords

Comments

From solution to a difference equation.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Extensions

More terms and better description from Vladeta Jovovic, Jan 23 2005

A365962 Triangle read by rows: coefficients in expansion of Asveld's polynomials Pi_j(x).

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 48, 30, 9, 1, 312, 192, 60, 12, 1, 2520, 1560, 480, 100, 15, 1, 24480, 15120, 4680, 960, 150, 18, 1, 277200, 171360, 52920, 10920, 1680, 210, 21, 1, 3588480, 2217600, 685440, 141120, 21840, 2688, 280, 24, 1, 52254720, 32296320, 9979200, 2056320, 317520, 39312, 4032, 360, 27, 1
Offset: 0

Views

Author

Mélika Tebni, Sep 23 2023

Keywords

Examples

			Triangle begins:
      1,
      3,     1,
     10,     6,    1,
     48,    30,    9,   1,
    312,   192,   60,  12,   1,
   2520,  1560,  480, 100,  15,  1,
  24480, 15120, 4680, 960, 150, 18, 1,
  ...
		

Crossrefs

Cf. A000045, A005921 (col 0), A005922 (col 1), A039948, A341725.

Programs

  • Maple
    T := proc(n, k) option remember;if k = n then 1  else (n!/k!*combinat[fibonacci](n-k+3)) fi end: seq(print(seq(T(n, k), k = 0..n)), n=0..9);
    # second Maple program:
    T := (n,k) -> add(Stirling2(j, k)*add(Stirling1(n, i)*A341725(i, j), i = j .. n), j = k .. n): seq(print(seq(T(n, k), k = 0 .. n)), n = 0 .. 9);
  • PARI
    T(n,k) = n!/k!*sum(j=k, n, fibonacci(j-k+1)*binomial(2,n-j)) \\ Winston de Greef, Oct 21 2023
    
  • PARI
    T(n,k) = if(n == k, 1, n!/k!*fibonacci(n-k+3)) \\ Winston de Greef, Oct 21 2023

Formula

E.g.f. of column k: (1+x)^2*x^k / ((1-x-x^2)*k!), k >= 0.
T(n,n) = 1 and T(n,k) = n!/k!*Fibonacci(n-k+3), n > k >= 0.
T(n,k) = n!/k!*Sum_{j=k..n} Fibonacci(j-k+1)*binomial(2,n-j).
T(n,k) = n!/k!*Sum_{j=k..n} (Fibonacci(j-k)+(-1)^(j-k))*binomial(3,n-j).
Recurrence: T(n,0) = A005921(n) and T(n,k) = n*T(n-1,k-1) / k, n >= k >= 1.
T(n,k) = Sum_{j=k..n} Stirling2(j,k)*(Sum_{i=j..n} Stirling1(n,i)*A341725(i,j)).
Sum_{j=k..n} (-1)^(n-j)*(n-j+1)!*binomial(n,j)*T(j,k) = A039948(n,k).
Showing 1-2 of 2 results.