A005935 Pseudoprimes to base 3.
91, 121, 286, 671, 703, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4961, 5551, 6601, 7381, 8401, 8911, 10585, 11011, 12403, 14383, 15203, 15457, 15841, 16471, 16531, 18721, 19345, 23521, 24046, 24661, 24727, 28009, 29161
Offset: 1
Keywords
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 91, p. 33, Ellipses, Paris 2008.
- R. K. Guy, Unsolved Problems in Number Theory, A12.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- R. J. Mathar, T. D. Noe and Hiroaki Yamanouchi, Table of n, a(n) for n = 1..102839 (terms a(1)-a(798) from R. J. Mathar, a(799)-a(1000) from T. D. Noe)
- J. Bernheiden, Pseudoprimes (Text in German)
- C. Pomerance & N. J. A. Sloane, Correspondence, 1991
- F. Richman, Primality testing with Fermat's little theorem
- Carlos Rivera, Conjecture 105: conjecture about twin primes and pseudo twin primes to base 3, The Prime Puzzles & Problems Connection.
- Rudolf Steuerwald, Über die Kongruenz a^(n-1) == 1 (mod n), Sitzungsber. math.-naturw. Kl. Bayer. Akad. Wiss. München, 1948, pp. 69-70.
- Eric Weisstein's World of Mathematics, Fermat Pseudoprime
- Index entries for sequences related to pseudoprimes
Crossrefs
Programs
-
Mathematica
base = 3; t = {}; n = 1; While[Length[t] < 100, n++; If[! PrimeQ[n] && PowerMod[base, n-1, n] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Feb 21 2012 *)
-
PARI
is_A005935(n)={Mod(3,n)^(n-1)==1 & !ispseudoprime(n) & n>1} \\ M. F. Hasler, Jul 19 2012
Extensions
More terms from David W. Wilson, Aug 15 1996
Comments