A005936 Pseudoprimes to base 5.
4, 124, 217, 561, 781, 1541, 1729, 1891, 2821, 4123, 5461, 5611, 5662, 5731, 6601, 7449, 7813, 8029, 8911, 9881, 11041, 11476, 12801, 13021, 13333, 13981, 14981, 15751, 15841, 16297, 17767, 21361, 22791, 23653, 24211, 25327, 25351, 29341, 29539
Offset: 1
Keywords
References
- R. Crandall and C. Pomerance, "Prime Numbers - A Computational Perspective", Second Edition, Springer Verlag 2005, ISBN 0-387-25282-7 Page 132 (Theorem 3.4.2. and Algorithm 3.4.3)
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 124, p. 43, Ellipses, Paris 2008.
- R. K. Guy, Unsolved Problems in Number Theory, A12.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- R. J. Mathar, T. D. Noe and Hiroaki Yamanouchi, Table of n, a(n) for n = 1..92893 (terms a(1)-a(776) from R. J. Mathar, a(777)-a(1000) from T. D. Noe)
- J. Bernheiden, Pseudoprimes (Text in German)
- C. Pomerance & N. J. A. Sloane, Correspondence, 1991
- F. Richman, Primality testing with Fermat's little theorem
- Eric Weisstein's World of Mathematics, Fermat Pseudoprime
- Index entries for sequences related to pseudoprimes
Crossrefs
Programs
-
Mathematica
base = 5; t = {}; n = 1; While[Length[t] < 100, n++; If[! PrimeQ[n] && PowerMod[base, n-1, n] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Feb 21 2012 *) Select[Range[30000],CompositeQ[#]&&PowerMod[5,#-1,#]==1&] (* Harvey P. Dale, Jul 21 2023 *)
Extensions
More terms from David W. Wilson, Aug 15 1996
Comments