A005941 Inverse of the Doudna sequence A005940.
1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 17, 12, 33, 18, 11, 16, 65, 14, 129, 20, 19, 34, 257, 24, 13, 66, 15, 36, 513, 22, 1025, 32, 35, 130, 21, 28, 2049, 258, 67, 40, 4097, 38, 8193, 68, 23, 514, 16385, 48, 25, 26, 131, 132, 32769, 30, 37, 72, 259, 1026, 65537, 44, 131073, 2050, 39, 64
Offset: 1
Keywords
References
- J. H. Conway, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
Crossrefs
Programs
-
Maple
A005941 := proc(n) local k ; for k from 1 do if A005940(k) = n then # code reuse return k; end if; end do ; end proc: # R. J. Mathar, Mar 06 2010
-
Mathematica
f[n_] := Block[{p = Partition[ Split[ Join[ IntegerDigits[n - 1, 2], {2}]], 2]}, Times @@ Flatten[ Table[q = Take[p, -i]; Prime[ Count[ Flatten[q], 0] + 1]^q[[1, 1]], {i, Length[p]}] ]]; t = Table[ f[n], {n, 10^5}]; Flatten[ Table[ Position[t, n, 1, 1], {n, 64}]] (* Robert G. Wilson v, Feb 22 2005 *)
-
PARI
A005941(n) = { my(f=factor(n), p, p2=1, res=0); for(i=1, #f~, p = 1 << (primepi(f[i, 1])-1); res += (p * p2 * (2^(f[i, 2])-1)); p2 <<= f[i, 2]); (1+res) }; \\ (After David A. Corneth's program for A156552) - Antti Karttunen, Jul 30 2023
-
Python
from sympy import primepi, factorint def A005941(n): return sum((1<
Chai Wah Wu, Mar 11 2023 -
Scheme
(define (A005941 n) (+ 1 (A156552 n))) ;; Antti Karttunen, Jun 26 2014
Formula
a(n) = h(g(n,1,1), 0) / 2 + 1 with h(n, m) = if n=0 then m else h(floor(n/2), 2*m + n mod 2) and g(n, i, x) = if n=1 then x else (if n mod prime(i) = 0 then g(n/prime(i), i, 2*x+1) else g(n, i+1, 2*x)). - Reinhard Zumkeller, Aug 23 2006
a(n) = 1 + A156552(n). - Antti Karttunen, Jun 26 2014
Extensions
More terms from Robert G. Wilson v, Feb 22 2005
a(61) inserted by R. J. Mathar, Mar 06 2010
Comments