cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005941 Inverse of the Doudna sequence A005940.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 17, 12, 33, 18, 11, 16, 65, 14, 129, 20, 19, 34, 257, 24, 13, 66, 15, 36, 513, 22, 1025, 32, 35, 130, 21, 28, 2049, 258, 67, 40, 4097, 38, 8193, 68, 23, 514, 16385, 48, 25, 26, 131, 132, 32769, 30, 37, 72, 259, 1026, 65537, 44, 131073, 2050, 39, 64
Offset: 1

Views

Author

Keywords

Comments

a(2^k) = 2^k. - Robert G. Wilson v, Feb 22 2005
Fixed points: A029747. - Reinhard Zumkeller, Aug 23 2006
Question: Is there a simple proof that a(c) = c would never allow an odd composite c as a solution? See also A364551. - Antti Karttunen, Jul 30 2023

References

  • J. H. Conway, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A103969. Inverse of A005940. One more than A156552.
Cf. A364559 [= a(n)-n], A364557 (Möbius transform), A364558.
Cf. A029747 [known positions where a(n) = n], A364560 [where a(n) <= n], A364561 [where a(n) <= n and n is odd], A364562 [where a(n) > n], A364548 [where n divides a(n)], A364549 [where odd n divides a(n)], A364550 [where a(n) divides n], A364551 [where a(n) divides n and n is odd].

Programs

  • Maple
    A005941 := proc(n)
        local k ;
        for k from 1 do
        if A005940(k) = n then # code reuse
            return k;
        end if;
        end do ;
    end proc: # R. J. Mathar, Mar 06 2010
  • Mathematica
    f[n_] := Block[{p = Partition[ Split[ Join[ IntegerDigits[n - 1, 2], {2}]], 2]}, Times @@ Flatten[ Table[q = Take[p, -i]; Prime[ Count[ Flatten[q], 0] + 1]^q[[1, 1]], {i, Length[p]}] ]]; t = Table[ f[n], {n, 10^5}]; Flatten[ Table[ Position[t, n, 1, 1], {n, 64}]] (* Robert G. Wilson v, Feb 22 2005 *)
  • PARI
    A005941(n) = { my(f=factor(n), p, p2=1, res=0); for(i=1, #f~, p = 1 << (primepi(f[i, 1])-1); res += (p * p2 * (2^(f[i, 2])-1)); p2 <<= f[i, 2]); (1+res) }; \\ (After David A. Corneth's program for A156552) - Antti Karttunen, Jul 30 2023
  • Python
    from sympy import primepi, factorint
    def A005941(n): return sum((1<Chai Wah Wu, Mar 11 2023
    
  • Scheme
    (define (A005941 n) (+ 1 (A156552 n))) ;; Antti Karttunen, Jun 26 2014
    

Formula

a(n) = h(g(n,1,1), 0) / 2 + 1 with h(n, m) = if n=0 then m else h(floor(n/2), 2*m + n mod 2) and g(n, i, x) = if n=1 then x else (if n mod prime(i) = 0 then g(n/prime(i), i, 2*x+1) else g(n, i+1, 2*x)). - Reinhard Zumkeller, Aug 23 2006
a(n) = 1 + A156552(n). - Antti Karttunen, Jun 26 2014

Extensions

More terms from Robert G. Wilson v, Feb 22 2005
a(61) inserted by R. J. Mathar, Mar 06 2010