cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005970 Partial sums of squares of Lucas numbers.

Original entry on oeis.org

1, 10, 26, 75, 196, 520, 1361, 3570, 9346, 24475, 64076, 167760, 439201, 1149850, 3010346, 7881195, 20633236, 54018520, 141422321, 370248450, 969323026, 2537720635, 6643838876, 17393796000, 45537549121, 119218851370
Offset: 1

Views

Author

Keywords

References

  • Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 20.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    lucas := proc(n) option remember: if n=1 then RETURN(1) fi: if n=2 then RETURN(3) fi: lucas(n-1)+lucas(n-2) end: l[0] := 0: for i from 1 to 50 do l[i] := l[i-1]+lucas(i)^2; printf(`%d,`,l[i]) od: # James Sellers, May 29 2000
  • Mathematica
    Accumulate[LucasL[Range[30]]^2] (* Harvey P. Dale, Dec 06 2019 *)

Formula

a(n) - a(n-1) = A001254(n).
G.f.: (1+7*x-4*x^2)/((1-x)*(1+x)*(1-3*x+x^2)). - Simon Plouffe in his 1992 dissertation
From Amiram Eldar, Jan 13 2022: (Start)
a(n) = Sum_{k=1..n} L(k)^2, where L(k) is the k-th Lucas number (A000032).
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4), for n > 4.
a(n) = L(n)*L(n+1) - 2 = A215602(n) - 2. (End)

Extensions

More terms from James Sellers, May 29 2000
Definition clarified by Harvey P. Dale, Dec 06 2019