cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005998 Number of paraffins.

Original entry on oeis.org

1, 2, 7, 14, 29, 48, 79, 116, 169, 230, 311, 402, 517, 644, 799, 968, 1169, 1386, 1639, 1910, 2221, 2552, 2927, 3324, 3769, 4238, 4759, 5306, 5909, 6540, 7231, 7952, 8737, 9554, 10439, 11358, 12349, 13376, 14479, 15620, 16841, 18102, 19447, 20834, 22309
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    [1/8*(2*n^3-2*n^2+5*n-(-1)^n*(n+1)+1): n in [1..50]]; // Vincenzo Librandi, Mar 15 2014
  • Maple
    a:= n-> (Matrix([[0, -1, -4, -11, -22, -41]]). Matrix(6, (i,j)-> if (i=j-1) then 1 elif j=1 then [2, 1, -4, 1, 2, -1][i] else 0 fi)^n)[1,1]:
    seq(a(n), n=1..38); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    a[n_] := 1/8*(2*n^3-2*n^2+5*n-(-1)^n*(n+1)+1); Array[a, 40] (* Jean-François Alcover, Mar 13 2014 *)
    CoefficientList[Series[(x^4 + 2 x^3 + 2 x^2 + 1)/(-1 + x)^2/(-1 + x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 15 2014 *)
    LinearRecurrence[{2,1,-4,1,2,-1},{1,2,7,14,29,48},50] (* Harvey P. Dale, Oct 13 2024 *)

Formula

G.f.: x*(x^4+2*x^3+2*x^2+1)/(-1+x)^2/(-1+x^2)^2.

Extensions

More terms from Vincenzo Librandi, Mar 15 2014