A006037 Weird numbers: abundant (A005101) but not pseudoperfect (A005835).
70, 836, 4030, 5830, 7192, 7912, 9272, 10430, 10570, 10792, 10990, 11410, 11690, 12110, 12530, 12670, 13370, 13510, 13790, 13930, 14770, 15610, 15890, 16030, 16310, 16730, 16870, 17272, 17570, 17990, 18410, 18830, 18970, 19390, 19670
Offset: 1
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 70, p. 24, Ellipses, Paris 2008.
- R. K. Guy, Unsolved Problems in Number Theory, B2.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 129.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000 (first 4901 terms from Lukasz Swierczewski)
- Gianluca Amato, Maximilian Hasler, Giuseppe Melfi, and Maurizio Parton, Primitive weird numbers having more than three distinct prime factors, Riv. Mat. Univ. Parma, 7(1), (2016), 153-163, arXiv:1803.00324 [math.NT], 2018.
- S. Benkoski, Are All Weird Numbers Even?, Problem E2308, Amer. Math. Monthly, 79 (7) (1972), 774.
- S. J. Benkoski and P. Erdős, On weird and pseudoperfect numbers, Math. Comp., 28 (1974), pp. 617-623. Alternate link; 1975 corrigendum.
- David Eppstein, Eqyptian Fractions.
- Wenjie Fang, Searching on the boundary of abundance for odd weird numbers, arXiv:2207.12906 [math.NT], 2022.
- R. K. Guy, Letter to N. J. A. Sloane with attachment, Jun. 1991.
- H. J. Hindin, Quasipractical numbers, IEEE Communications Magazine, March 1980, pp. 41-45.
- Odd Weird Search, Report on the recently completed batch, Feb 23 2015.
- OProject, Weird numbers list.
- J. Sandor and B. Crstici, Handbook of number theory II, chapter 1.8. [Broken link]
- Eric Weisstein's World of Mathematics, Weird Number.
- Wikipedia, Weird number.
- Robert G. Wilson v, Letter to N. J. A. Sloane, Jan. 1992.
- Robert G. Wilson v, Letter to N. J. A. Sloane, Oct. 1993.
Programs
-
Haskell
a006037 n = a006037_list !! (n-1) a006037_list = filter ((== 0) . a210455) a005101_list -- Reinhard Zumkeller, Jan 21 2013
-
Maple
isA006037 := proc(n) isA005101(n) and not isA005835(n) ; end proc: for n from 1 do if isA006037(n) then print(n); end if; end do: # R. J. Mathar, Jun 18 2015
-
Mathematica
(* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) fQ[n_] := Block[{d, l, t, i}, If[ DivisorSigma[1, n] > 2n && Mod[n, 6] != 0, d = Take[Divisors[n], {1, -2}]; l = 2^Length[d]; t = Table[ NthSubset[j, d], {j, l - 1}]; i = 1; While[i < l && Plus @@ t[[i]] != n, i++ ]]; If[i == l, True, False]]; Select[ Range[ 20000], fQ[ # ] &] (* Robert G. Wilson v, May 20 2005 *)
-
PARI
is_A006037(n,d=divisors(n),s=vecsum(d)-n,m=#d-1)={ m||return; while(d[m]>n, s-=d[m]; m--); d[m]
n, is_A006037(n-d[m], d, s-d[m], m-1) && is_A006037(n, d, s-d[m], m-1), s M. F. Hasler, Mar 30 2008; improved and updated to current PARI syntax by M. F. Hasler, Jul 15 2016 -
PARI
is_A006037(n, d=divisors(n)[^-1], s=vecsum(d))={s>n && !is_A005835(n,d,s)} \\ Equivalent but slightly faster than the self-contained version above.-- For efficiency, ensure that the argument is even or add "!bittest(n,0) && ..." to check this first. - M. F. Hasler, Jul 17 2016
-
PARI
t=0; A006037=vector(100,i, until( is_A006037(t+=2),); t) \\ M. F. Hasler, Mar 30 2008
Extensions
More terms from Jud McCranie, Oct 21 2001
Comments