A006038 Odd primitive abundant numbers.
945, 1575, 2205, 3465, 4095, 5355, 5775, 5985, 6435, 6825, 7245, 7425, 8085, 8415, 8925, 9135, 9555, 9765, 11655, 12705, 12915, 13545, 14805, 15015, 16695, 18585, 19215, 19635, 21105, 21945, 22365, 22995, 23205, 24885, 25935, 26145, 26565, 28035, 28215
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- L. E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors, American Journal of Mathematics 35 (1913), pp. 413-422.
- R. K. Guy, Letter to N. J. A. Sloane with attachment, Jun. 1991
- Jacob Liddy, An algorithm to determine all odd primitive abundant numbers with d prime divisors, Honors Research Projects (2018), 728.
- Eric Weisstein's World of Mathematics, Primitive Abundant Number
Crossrefs
Programs
-
Haskell
a006038 n = a006038_list !! (n-1) a006038_list = filter f [1, 3 ..] where f x = sum pdivs > x && all (<= 0) (map (\d -> a000203 d - 2 * d) pdivs) where pdivs = a027751_row x -- Reinhard Zumkeller, Jan 31 2014
-
Maple
isA005101 := proc(n) is(numtheory[sigma](n) > 2*n ); end proc: isA005100 := proc(n) is(numtheory[sigma](n) < 2*n ); end proc: isA006038 := proc(n) local d; if type(n,'odd') and isA005101(n) then for d in numtheory[divisors](n) minus {1,n} do if not isA005100(d) then return false; end if; end do: return true;else false; end if; end proc: n := 1 ; for a from 1 by 2 do if isA006038(a) then printf("%d %d\n",n,a) ; n := n+1 ; end if; end do: # R. J. Mathar, Mar 28 2011
-
Mathematica
t = {}; n = 1; While[Length[t] < 50, n = n + 2; If[DivisorSigma[1, n] > 2 n && Intersection[t, Divisors[n]] == {}, AppendTo[t, n]]]; t (* T. D. Noe, Mar 28 2011 *)
-
PARI
is(n)=n%2 && sumdiv(n,d,sigma(d,-1)>2)==1 \\ Charles R Greathouse IV, Jun 10 2013
-
PARI
is_A006038(n)=bittest(n,0) && sigma(n)>2*n && !for(i=1,#f=factor(n)[,1],sigma(n\f[i],-1)>2&&return) \\ More than 5 times faster. - M. F. Hasler, Jul 28 2016
Comments