A006086 Unitary harmonic numbers (those for which the unitary harmonic mean is an integer).
1, 6, 45, 60, 90, 420, 630, 1512, 3780, 5460, 7560, 8190, 9100, 15925, 16632, 27300, 31500, 40950, 46494, 51408, 55125, 64260, 66528, 81900, 87360, 95550, 143640, 163800, 172900, 185976, 232470, 257040, 330750, 332640, 464940, 565488, 598500, 646425, 661500
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Donovan Johnson, Table of n, a(n) for n = 1..290 (terms < 10^12)
- Takeshi Goto, Upper Bounds for Unitary Perfect Numbers and Unitary Harmonic Numbers, Rocky Mountain Journal of Mathematics, Vol. 37, No. 5 (2007), pp. 1557-1576.
- P. Hagis, Jr. and G. Lord, Unitary harmonic numbers, Proc. Amer. Math. Soc., 51 (1975), 1-7.
- P. Hagis, Jr. and G. Lord, Unitary harmonic numbers, Proc. Amer. Math. Soc., 51 (1975), 1-7. (Annotated scanned copy)
- Charles R. Wall, Unitary harmonic numbers, Fibonacci Quarterly, Vol. 21, No. 1 (1983), pp. 18-25.
Programs
-
Haskell
a006086 n = a006086_list !! (n-1) a006086_list = filter ((== 1) . a103340) [1..] -- Reinhard Zumkeller, Mar 17 2012
-
Mathematica
ud[n_] := 2^PrimeNu[n]; usigma[n_] := Sum[ If[ GCD[d, n/d] == 1, d, 0], {d, Divisors[n]}]; uhm[n_] := n*ud[n]/usigma[n]; Reap[ Do[ If[ IntegerQ[uhm[n]], Print[n]; Sow[n]], {n, 1, 10^6}]][[2, 1]] (* Jean-François Alcover, May 16 2013 *)
-
PARI
udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); } isok(n) = my(v=udivs(n)); denominator(n*#v/vecsum(v))==1; \\ Michel Marcus, May 07 2017
-
PARI
is(n,f=factor(n))=(n<<(#f~))%sumdivmult([n,f], d, if(gcd(d, n/d)==1, d))==0 \\ Charles R Greathouse IV, Nov 05 2021
-
PARI
list(lim)=my(v=List()); forfactored(n=1,lim\1, if((n[1]<
Charles R Greathouse IV, Nov 05 2021
Formula
If m is a term and omega(m) = A001221(m) = k, then m < 2^(k*2^k) (Goto, 2007). - Amiram Eldar, Jun 06 2020
Extensions
More terms from Emeric Deutsch, Dec 22 2004
Comments