cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006086 Unitary harmonic numbers (those for which the unitary harmonic mean is an integer).

Original entry on oeis.org

1, 6, 45, 60, 90, 420, 630, 1512, 3780, 5460, 7560, 8190, 9100, 15925, 16632, 27300, 31500, 40950, 46494, 51408, 55125, 64260, 66528, 81900, 87360, 95550, 143640, 163800, 172900, 185976, 232470, 257040, 330750, 332640, 464940, 565488, 598500, 646425, 661500
Offset: 1

Views

Author

Keywords

Comments

Let ud(n) and usigma(n) be number of and sum of unitary divisors of n; then the unitary harmonic mean of the unitary divisors is H(n) = n*ud(n)/usigma(n). - Emeric Deutsch, Dec 22 2004
A103340(a(n)) = 1; A103339(a(n)) = A006087(n). - Reinhard Zumkeller, Mar 17 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A006087 for more info.

Programs

  • Haskell
    a006086 n = a006086_list !! (n-1)
    a006086_list = filter ((== 1) . a103340) [1..]
    -- Reinhard Zumkeller, Mar 17 2012
    
  • Mathematica
    ud[n_] := 2^PrimeNu[n]; usigma[n_] := Sum[ If[ GCD[d, n/d] == 1, d, 0], {d, Divisors[n]}]; uhm[n_] := n*ud[n]/usigma[n]; Reap[ Do[ If[ IntegerQ[uhm[n]], Print[n]; Sow[n]], {n, 1, 10^6}]][[2, 1]] (* Jean-François Alcover, May 16 2013 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    isok(n) = my(v=udivs(n)); denominator(n*#v/vecsum(v))==1; \\ Michel Marcus, May 07 2017
    
  • PARI
    is(n,f=factor(n))=(n<<(#f~))%sumdivmult([n,f], d, if(gcd(d, n/d)==1, d))==0 \\ Charles R Greathouse IV, Nov 05 2021
    
  • PARI
    list(lim)=my(v=List()); forfactored(n=1,lim\1, if((n[1]<Charles R Greathouse IV, Nov 05 2021

Formula

If m is a term and omega(m) = A001221(m) = k, then m < 2^(k*2^k) (Goto, 2007). - Amiram Eldar, Jun 06 2020

Extensions

More terms from Emeric Deutsch, Dec 22 2004