cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006088 a(n) = (2^n + 2) a(n-1) (kissing number of Barnes-Wall lattice in dimension 2^n).

Original entry on oeis.org

1, 4, 24, 240, 4320, 146880, 9694080, 1260230400, 325139443200, 167121673804800, 171466837323724800, 351507016513635840000, 1440475753672879672320000, 11803258325595576034990080000, 193408190923209108909347450880000
Offset: 0

Views

Author

N. J. A. Sloane, John Leech

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A028362. - Paul D. Hanna, Sep 16 2009
Cf. A081845.

Programs

  • Magma
    I:=[4]; [1] cat [n le 1 select I[n] else (2^n + 2)*Self(n-1): n in [1..20]]; // Vincenzo Librandi, Dec 31 2015
  • Maple
    a[0]:=1: for n from 1 to 16 do a[n]:=(2^n+2)*a[n-1] od: seq(a[n],n=0..16); # Emeric Deutsch, Dec 10 2004
  • Mathematica
    RecurrenceTable[{a[0]==1, a[n]==(2^n + 2) a[n-1]}, a[n], {n, 0, 25}] (* Vincenzo Librandi, Dec 31 2015 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,2^(m*(m+1)/2)*x^m/prod(k=1,m+1,1-2^k*x+x*O(x^n))),n)} \\ Paul D. Hanna, Sep 16 2009
    
  • PARI
    a(n) = prod(k=1, n, 2+2^k); \\ Michel Marcus, Jan 01 2016
    

Formula

a(n) = (2+2)(2+4)(2+8)(2+16)...(2+2^n).
From Paul D. Hanna, Sep 16 2009: (Start)
G.f.: Sum_{n>=0} 2^(n*(n+1)/2) * x^n/[Product_{k=1..n+1} (1-2^k*x)];
contrast with:
1 = Sum_{n>=0} 2^(n*(n+1)/2) * x^n/[Product_{k=1..n+1} (1+2^k*x)]. (End)
a(n) ~ c * 2^(n*(n+1)/2), where c = A081845. - Vaclav Kotesovec, Dec 31 2015

Extensions

More terms from Emeric Deutsch, Dec 10 2004
Replaced arXiv URL with non-cached version - R. J. Mathar, Oct 23 2009