cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A006102 Gaussian binomial coefficient [ n,4 ] for q=3.

Original entry on oeis.org

1, 121, 11011, 925771, 75913222, 6174066262, 500777836042, 40581331447162, 3287582741506063, 266307564861468823, 21571273555248777493, 1747282899667791058573, 141530177899268957392924, 11463951511551877750726204, 928580264181940191843785764, 75215006575885931519565302404
Offset: 4

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Partial sums of A226804. - Christian Krause, Dec 26 2022

Programs

  • Magma
    r:=4; q:=3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 02 2016
  • Maple
    A006102:=-1/((z-1)*(81*z-1)*(3*z-1)*(9*z-1)*(27*z-1)); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[QBinomial[n, 4, 3], {n, 4, 24}] (* Vincenzo Librandi, Aug 02 2016 *)
  • Sage
    [gaussian_binomial(n,4,3) for n in range(4,20)] # Zerinvary Lajos, May 25 2009